median particle size
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 2)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2059
Author(s):  
Xiaopeng Peng ◽  
Lijie Guo ◽  
Guangsheng Liu ◽  
Xiaocong Yang ◽  
Xinzheng Chen

Previous studies have found that the strength of in situ cemented tailings backfill usually presents an S-shaped distribution, which decreases first, then increases, and decreases thereafter along the direction of slurry flow. In this study, to explore the factors determining the distribution, a similar model test of cemented tailings backfill was carried out. The distribution law of grain size composition and the cement content of backfill materials along the flow direction were experimentally studied, and the comprehensive factor influencing the strength distribution was analyzed. The results show that, firstly, near the feeding point, there are more coarse particles, whereas the content of fine particles is higher farther away. The measured maximum median particle size can be more than three times the minimum value. Secondly, the cement content increases gradually along the flow direction and reaches the peak at the end of the model, which can be more than twice the minimum value, indicating that the degree of segregation is significant. Thirdly, the strength distribution of cemented backfills is comprehensively determined by both the particle size distribution (PSD) and the cement content. The maximum value appears neither at the point with peak median particle size, nor at the point with the highest cement content. Lastly, there is a strong linear correlation between the strength of cemented backfills and the strength factor (SF), which is defined as the product of the uniformity coefficient and cement content of filling materials, indicating that the SF can be used to quantitatively reflect the comprehensive effects of PSD and cement content on the strength. As SF is a comprehensive quantitative index reflecting the distribution of strength, it will be further studied in later research to acquire more experimental results of the relationship between sample strength and SF, which will be meaningful for the quality evaluation of in situ cemented backfills, and the optimization of backfill system.


Author(s):  
Marvin A. Spurek ◽  
Lukas Haferkamp ◽  
Christian Weiss ◽  
Adriaan B. Spierings ◽  
Johannes H. Schleifenbaum ◽  
...  

AbstractPowder bed fusion (PBF) is the most commonly adopted additive manufacturing process for fabricating complex metal parts via the layer-wise melting of a powder bed using a laser beam. However, the qualification of PBF-manufactured parts remains challenging and expensive, thereby limiting the broader industrialization of the technology. Powder characteristics significantly influence part properties, and understanding the influencing factors contributes to effective quality standards for PBF. In this study, the influence of the particle size distribution (PSD) median and width on powder flowability and part properties is investigated. Seven gas-atomized SS316L powders with monomodal PSDs, a median particle size ranging from 10 μm to 60 μm, and a distribution width of 15 μm and 30 μm were analyzed and subsequently processed. The PBF-manufactured parts were analyzed in terms of density and melt pool dimensions. Although powder flowability was inversely related to the median particle size, it was unrelated to the distribution width. An inverse relationship between the median particle size and the part density was observed; however, no link was found to the distribution width. Likely, the melt pool depth and width fluctuation significantly influence the part density. The melt pool depth decreases and the width fluctuation increases with an increasing median particle size.


2021 ◽  
Author(s):  
Igor M. Ivanov ◽  
Tatiana B. Pechurina ◽  
Nikolai G. Vengerovich ◽  
Mikhail A. Yudin ◽  
Aleksandr S. Nikiforov ◽  
...  

Samples of antiemetic drugs (ondansetronum, palonosetronum, metoclopramidum) in the form of powder for inhalation have been developed by the method of spray drying. The granulometric composition, hygroscopicity and aerodynamic distribution of aerosol particles of the drugs have been investigated. The dosage form of the powder for inhalation of antiemetics (ondansetronum and palonosetronum) in terms of its particle size distribution, hygroscopicity and content of the agent corresponds to those for inhalation using dry powder inhalers. In the study of the phase-dispersed composition of aerosol, ondansetronum and palonosetronum in the dosage form of powder for inhalation as part of the HandiHaler inhaler (at a flow rate of 60 l / min) showed high rates of the released dose up to 72-76%, respirable particle fraction (up to 5 m) up to 54 -56% and a mass median particle size of about 3 microns. Obtaining the inhaled form of metoclopramide requires optimization of the production method for receiving the product with acceptable pharmaceutical properties.


2021 ◽  
pp. 1-13
Author(s):  
Harland L. Goldstein ◽  
Kathleen B. Springer ◽  
Jeffrey S. Pigati ◽  
Marith C. Reheis ◽  
Gary L. Skipp

Abstract The Las Vegas Formation (LVF) is a well-characterized sequence of groundwater discharge (GWD) deposits exposed in and around the Las Vegas Valley in southern Nevada. Nearly monolithologic bedrock surrounds the valley, which provides an excellent opportunity to test the hypothesis that GWD deposits include an aeolian component. Mineralogical data indicate that the LVF sediments are dominated by carbonate minerals, similar to the local bedrock, but silicate minerals are also present. The median particle size is ~35 μm, consistent with modern dust in the region, and magnetic properties contrast strongly with local bedrock, implying an extralocal origin. By combining geochemical data from the LVF sediments and modern dust, we found that an average of ~25% of the LVF deposits were introduced by aeolian processes. The remainder consists primarily of authigenic groundwater carbonate as well as minor amounts of alluvial material and soil carbonate. Our data also show that the aeolian sediments accumulated in spring ecosystems in the Las Vegas Valley in a manner that was independent of both time and the specific hydrologic environment. These results have broad implications for investigations of GWD deposits located elsewhere in the southwestern U.S. and worldwide.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 634
Author(s):  
Ruth Gong Li ◽  
Kim Lindland ◽  
Sandra Karen Tonstad ◽  
Tina Bjørnlund Bønsdorff ◽  
Asta Juzeniene ◽  
...  

Radium-224-labeled CaCO3 microparticles have been developed to treat peritoneal carcinomatosis. The microparticles function as carriers of 224Ra, facilitating intraperitoneal retention of the alpha-emitting radionuclide. It was necessary to control the size of microparticles in suspension over time and introduce a sterilization process for the clinical use of the radiopharmaceutical. Ethylenediamine tetra(methylene phosphonic acid) (EDTMP) was investigated as a stabilizing additive. The possibility of encapsulating the radiolabeled microparticles with an outer surface layer of CaCO3 for the improved retention of radioactivity by the carrier was studied. This work evaluated these steps of optimization and their effect on radiochemical purity, the biodistribution of radionuclides, and therapeutic efficacy. An EDTMP concentration of >1% (w/w) relative to CaCO3 stabilized the particle size for at least one week. Without EDTMP, the median particle size increased from ~5 µm to ~25 µm immediately after sterilization by autoclaving, and the larger microparticles sedimented rapidly in suspension. The percentage of adsorbed 224Ra progeny 212Pb increased from 56% to 94% at 2.4–2.5% (w/w) EDTMP when the 224Ra-labeled microparticles were layer-encapsulated. The improved formulation also resulted in a suitable biodistribution of radionuclides in mice, as well as a survival benefit for mice with intraperitoneal ovarian or colorectal tumors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huixin Wang ◽  
Hui Ren ◽  
Tao Yan ◽  
Yaru Li ◽  
Wanjun Zhao

AbstractAluminum can enhance heat release of energetic composite in theory. However, the commonly used micron aluminum powder has several short comings like incomplete reaction and low reaction rate. Meanwhile, outer oxide shell of nano Al particle is thicker than micro Al, which leads to low active aluminum content and insufficient heat release. On the basis of previous research, reported fluoropolymers modified Al particles were compared and suitable F2311was chosen. Sub-micron scale Al (median particle size around 200 nm) was regarded as optimum coated object in consideration of activity content of aluminum powder changing with particle size. The super fine Al powder was prepared by electrical explosion method, and encapsulated in situ by selected fluorine rubber F2311. The experiments on thermal stability demonstrated F2311 coating thickness should be no less than 3.6 nm. These results were further confirmed by EXPLO5 thermo dynamic calculation. Calculated results showed that reaction characters of F2311 encapsulated Al exceeded conventional nano Al regardless of combustion and explosion. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analyzer and X-ray photoelectron spectroscopy (XPS) were used to characterize coated products’ morphology, particle size distribution and interfacial bonding information. The results showed that the coated samples were generally spherical shape, with median particle size of 217.7 nm and coating thickness of 3.6 nm. The coating shell contained a small amount of alumina and aluminum fluoride besides fluoropolymer. The non-isothermal dynamic equations of Al/F2311 and Al/Al2O3 were deduced by TG/DSC simultaneous thermal analysis. Compared with conventional nano-Al, the apparent activation energy of Al/F2311 decreased by 45 kJ/mol and the first exothermic peak temperature was about 10 °C earlier. Moreover, heat release was nearly twice as conventional nano-Al. TG-DSC-MS coupled measurements certified that active Al was enveloped by ‘fluorine atmosphere’ while F2311 decomposed in range of 200–400 °C. Alumina was replaced with aluminum fluoride inside coating layer during 400–550 °C, which broadened the diffusion path and then accelerated the permeation of oxidizing gas. In addition, the exothermic of Al-F was obviously larger than Al-O. Consequently, the oxidation reaction was activated rapidly, especially in initial exothermic period. Fluoropolymer encapsulated sub-micron sized Al was a latent highly activity energetic fuel and a potential candidate for aluminum powder.


Author(s):  
Annika Wilms ◽  
Andreas Teske ◽  
Robin Meier ◽  
Raphael Wiedey ◽  
Peter Kleinebudde

Abstract Purpose In continuous manufacturing of pharmaceuticals, dry granulation is of interest because of its large throughput capacity and energy efficiency. In order to manufacture solid oral dosage forms continuously, valid control strategies for critical quality attributes should be established. To this date, there are no published control strategies for granule size distribution in continuous dry granulation. Methods In-line laser diffraction was used to determine the size of granules in a continuous roll compaction/dry granulation line (QbCon® dry). Different process parameters were evaluated regarding their influences on granule size. The identified critical process parameters were then incorporated into control strategies. The uncontrolled and the controlled processes were compared based on the resulting granule size. In both processes, a process parameter was changed to induce a shift in median particle size and the controller had to counteract this shift. Results In principle, all process parameters that affect the median particle size could also be used to control the particle size in a dry granulation process. The sieve impeller speed was found to be well suited to control the median particle size as it reacts fast and can be controlled independently of the throughput or material. Conclusion The median particle size in continuous roll compaction can be controlled by adjusting process parameters depending on real-time granule size measurements. The method has to be validated and explored further to identify critical requirements to the material and environmental conditions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
André Eiermann ◽  
Samo Smrke ◽  
Loïc-Marco Guélat ◽  
Marco Wellinger ◽  
Anja Rahn ◽  
...  

Abstract The objective of this paper is to elucidate the variables that govern coffee extraction from single serve coffee capsules. The study was conducted on 43 Nespresso and Nespresso-compatible capsules of the same geometry, from all of which the coffee was extracted on the same machine. This allowed the link between a range of coffee and capsule (input) parameters with coffee brew (output) variables to be studied. It was demonstrated that the most efficient way to increase total dissolved solids in the brew is to use more coffee for extraction, and/or to grind the coffee more finely. However, grinding too finely can lead to excessive flow restriction. The most significant new insight from this study is the importance of the proportion of fines (particles smaller than 100 µm) regarding the capsule extraction dynamics. Capsules with a higher share of fines, for similar median particle size of the ground coffee, led to longer extraction times. General rules applicable for capsule coffee product development were established, although fine-tuning of parameters for successful capsule coffee extraction remains specific to production line and type of coffee.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 970 ◽  
Author(s):  
Bao Hoang Duong ◽  
Hoai Nam Truong ◽  
Quynh Anh Phan Nguyen ◽  
Thuong Nhan Nguyen Phu ◽  
Le Thi Hong Nhan

Low aqueous solubility and poor bioavailability of curcumin have limited its application in various fields. One approach to address this issue is to formulate a nanosuspension that incorporates curcumin, which has been previously shown to exhibit remarkably improved solubility in comparison with that of a bare compound. In this study, the preparation process of curcumin nanosuspension was optimized with a median particle size as the outcome. Gum arabic was used as a natural polymeric surfactant and the suspension was formulated using high speed homogenization. Optimization results, realized via a response surface methodology, showed that a minimum median particle size (8.524 µm) could be attained under the following conditions: curcumin:gum arabic ratio of 1:6 g/g; homogenization speed of 8300 rpm and homogenization time of 40 min. Under these conditions, the particle size of obtained suspension was shown to be consistent for around seven days without major aggregation. The homogenization process could be scaled up to five times in terms of suspension volume. TEM also showed that curcumin nanoparticles had a nearly spherical shape and homogeneous structure with a size range of 40–80 nm.


2020 ◽  
Vol 998 ◽  
pp. 90-95
Author(s):  
Apipong Putkham ◽  
Somchai Ladhan ◽  
Ajchara Imkum Putkham

Surface area and particle size are significant properties of a catalyst that determine the reaction rate of the heterogeneous catalyst. In this research, calcium oxide derived from industrial eggshell waste was synthesized by thermal decomposition method under air-atmosphere. The obtained eggshell waste was washed, dried, and ground to 420 μm followed by calcination of the ground eggshell in different conditions including calcination temperature (800 to 900 °C) and holding time (1 to 4 hours). Changes of pore structure and the median particle size diameter of the obtained calcium oxides were systematically investigated by various scientific instruments. Results from powder X-ray diffractometer (PXRD) indicated that the calcium oxide can be obtained after calcination at both 800 and at 900°C. Laser diffractometer shows that median particle size diameter of calcium oxide significantly decreased by about 76-95 % with increasing of both calcination temperature and holding time. Additionally, specific surface area of calcium oxides determined by N2 adsorption experiment at-195 °C shows that surface area of calcium oxide dramatically decreased (37-84 %) with increasing both calcination temperature from 800 to 900 °C and calcination time from 1 to 4 hours. These results indicated that both calcination temperature and time play an important role in the shrinkage of pores of calcium oxide. Higher calcination temperature and longer holding time induce more shrinkage of pore leading to smaller particle size diameter and lower surface area of the calcium oxide catalyst.


Sign in / Sign up

Export Citation Format

Share Document