Research Note: The Central Domain of High Molecular Weight Glutenin Subunits is Water-Soluble

1999 ◽  
Vol 29 (2) ◽  
pp. 109-112 ◽  
Author(s):  
A.C.A.P.A. Bekkers ◽  
E. de Boef ◽  
A.A. van Dijk ◽  
R.J. Hamer
2007 ◽  
Vol 29 (3-4) ◽  
pp. 439-449 ◽  
Author(s):  
Han-Jung Chae ◽  
Geun-Youn Lee ◽  
Sun-Kyung Yang ◽  
Do-Sung Kim ◽  
Ki-Jung Yun ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23511 ◽  
Author(s):  
Zhongwei Yuan ◽  
Dengcai Liu ◽  
Lianquan Zhang ◽  
Li Zhang ◽  
Wenjie Chen ◽  
...  

1980 ◽  
Vol 29 (2) ◽  
pp. 376-382
Author(s):  
H. K. Kuramitsu ◽  
L. Wondrack ◽  
M. McGuinness

The Streptococcus mutans GS5 glucosyltransferase activities (both water-soluble and -insoluble glucan-synthesizing fractions) were inhibited by purified lipoteichoic acid. In vitro sucrose-dependent colonization of smooth surfaces by strain GS5 was also markedly reduced in the presence of the amphipathic molecules. The inhibition of soluble glucan synthesis by lipoteichoic acid appeared to be competitive with respect to both sucrose and primer dextran T10. These inhibitory effects were dependent on the presence of the fatty acid components of lipoteichoic acid since deacylated lipoteichoic acids did not inhibit glucosyltransferase activity. However, the deacylated molecules did interact with the enzymes since deacylated lipoteichoic acid partially protected the enzyme activity against heat inactivation and also induced the formation of high-molecular-weight enzyme complexes from the soluble glucan-synthesizing fraction. The presence of teichoic acid in high-molecular-weight aggregates of glucosyltransferase isolated from the culture fluids of strain GS5 was suggested by the detection of polyglycerophosphate in these fractions. In addition to strain GS5, two other organisms containing polyglycerophosphate teichoic acids, Lactobacillus casei and Lactobacillus fermentum , were demonstrated to bind glucosyltransferase activity. These results are discussed relative to the potential role of teichoic acid-glucosyltransferase interactions in enzyme binding to the cell surface of S. mutans and the formation of high-molecular-weight enzyme aggregates in the culture fluids of the organism.


2000 ◽  
Vol 50 (4) ◽  
pp. 303-308 ◽  
Author(s):  
Kanenori Tanaka ◽  
Hiroaki Yamauchi ◽  
Zenta Nishio ◽  
Tatsuo Kuwabara

1998 ◽  
Vol 28 (1) ◽  
pp. 25-32 ◽  
Author(s):  
I.M. Verbruggen ◽  
W.S. Veraverbeke ◽  
A. Vandamme ◽  
J.A. Delcour

Sign in / Sign up

Export Citation Format

Share Document