scholarly journals Global Existence for Semilinear Evolution Equations with Nonlocal Conditions

1997 ◽  
Vol 210 (2) ◽  
pp. 679-687 ◽  
Author(s):  
S.K. Ntouyas ◽  
P.Ch. Tsamatos
2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Jung-Chan Chang ◽  
Hsiang Liu

This paper is concerned with the existence of mild and strong solutions for a class of semilinear evolution equations with nonlocal initial conditions. The linear part is assumed to be a (not necessarily densely defined) sectorial operator in a Banach spaceX. Considering the equations in the norm of some interpolation spaces betweenXand the domain of the linear part, we generalize the recent conclusions on this topic. The obtained results will be applied to a class of semilinear functional partial differential equations with nonlocal conditions.


2008 ◽  
Vol 20 (06) ◽  
pp. 625-706 ◽  
Author(s):  
CARLO MOROSI ◽  
LIVIO PIZZOCCHERO

In our previous paper [12], a general framework was outlined to treat the approximate solutions of semilinear evolution equations; more precisely, a scheme was presented to infer from an approximate solution the existence (local or global in time) of an exact solution, and to estimate their distance. In the first half of the present work, the abstract framework of [12] is extended, so as to be applicable to evolutionary PDEs whose nonlinearities contain derivatives in the space variables. In the second half of the paper, this extended framework is applied to the incompressible Navier–Stokes equations, on a torus Td of any dimension. In this way, a number of results are obtained in the setting of the Sobolev spaces ℍn(Td), choosing the approximate solutions in a number of different ways. With the simplest choices we recover local existence of the exact solution for arbitrary data and external forces, as well as global existence for small data and forces. With the supplementary assumption of exponential decay in time for the forces, the same decay law is derived for the exact solution with small (zero mean) data and forces. The interval of existence for arbitrary data, the upper bounds on data and forces for global existence, and all estimates on the exponential decay of the exact solution are derived in a fully quantitative way (i.e. giving the values of all the necessary constants; this makes a difference with most of the previous literature). Next, the Galerkin approximate solutions are considered and precise, still quantitative estimates are derived for their ℍn distance from the exact solution; these are global in time for small data and forces (with exponential time decay of the above distance, if the forces decay similarly).


2018 ◽  
Vol 21 (4) ◽  
pp. 919-936 ◽  
Author(s):  
Nazim I. Mahmudov

Abstract In this work we extend a variational method to study the approximate controllability and finite dimensional exact controllability (finite-approximate controllability) for the fractional semilinear evolution equations with nonlocal conditions in Hilbert spaces. Assuming the approximate controllability of the corresponding linear equation we obtain sufficient conditions for the finite-approximate controllability of the fractional semilinear evolution equation under natural conditions. The obtained results are generalization and continuation of the recent results on this issue. Applications to heat equations are treated.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Abdessalam Baliki ◽  
Mouffak Benchohra

AbstractIn this paper we prove the global existence and attractivity of mild solutions for neutral semilinear evolution equations with state-dependent delay in a Banach space.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Yongqin Xie ◽  
Zhufang He ◽  
Chen Xi ◽  
Zheng Jun

We prove the asymptotic regularity of global solutions for a class of semilinear evolution equations in H01(Ω)×H01(Ω). Moreover, we study the long-time behavior of the solutions. It is proved that, under the natural assumptions, these equations possess the compact attractor 𝒜 which is bounded in H2(Ω)×H2(Ω), where the nonlinear term f satisfies a critical exponential growth condition.


Sign in / Sign up

Export Citation Format

Share Document