Genetic dissection of the Streptococcus pyogenes M1 protein: regions involved in fibronectin binding and intracellular invasion

2001 ◽  
Vol 31 (5) ◽  
pp. 231-242 ◽  
Author(s):  
David Cue ◽  
Hong Lam ◽  
P.Patrick Cleary
2010 ◽  
Vol 4 (1) ◽  
pp. 22-26
Author(s):  
ROGA FLORIDA KEMBAREN ◽  
ADAM REZA GANJARA ◽  
VALENTINA YURINA ◽  
DEBBIE SOEFIE RETNONINGRUM

2005 ◽  
Vol 49 (7) ◽  
pp. 2990-2993 ◽  
Author(s):  
Maria Haller ◽  
Kirsten Fluegge ◽  
Sandra Jasminder Arri ◽  
Brit Adams ◽  
Reinhard Berner

ABSTRACT A total of 301 German pediatric group A streptococcus isolates were screened for the presence of macrolide resistance and the fibronectin binding protein F1 gene (prtF1) encoding an adhesin and cell invasiveness protein. The prtF1 gene was present significantly more often among macrolide-resistant isolates. The majority of these were not clonally related.


2007 ◽  
Vol 75 (6) ◽  
pp. 3188-3191 ◽  
Author(s):  
Kendra A. Hyland ◽  
Beinan Wang ◽  
P. Patrick Cleary

ABSTRACT Streptococcus pyogenes is a major cause of pharyngitis in humans and encodes several fibronectin-binding proteins. M protein and protein F1 (PrtF1/SfbI) are differentially regulated by CO2 and O2, respectively, and both mediate the invasion of epithelial cells. This study examined whether PrtF1/SfbI shares other properties with M protein. Expression of the PrtF1/SfbI protein by an M-negative mutant conferred resistance to phagocytosis and partial inhibition of C3 deposition on the S. pyogenes surface.


2000 ◽  
Vol 68 (6) ◽  
pp. 3226-3232 ◽  
Author(s):  
Michael S. Chaussee ◽  
Robert L. Cole ◽  
Jos P. M. van Putten

ABSTRACT Streptococcus pyogenes secretes several proteins that influence host-pathogen interactions. A tissue-culture model was used to study the influence of the secreted cysteine protease streptococcal erythrogenic toxin B (SPE B) on the interaction between S. pyogenes strain NZ131 (serotype M49) and mammalian cells. Inactivation of the speB gene enhanced fibronectin-dependent uptake of the pathogen by Chinese hamster ovary (CHO-K1) cells compared to that in the isogenic wild-type strain. Preincubation of the NZ131 speB mutant with purified SPE B protease significantly inhibited fibronectin-dependent uptake by both CHO-K1 and CHO-pgs745 cells. The effect was attributed to an abrogation of fibronectin binding to the surface of the bacteria that did not involve either the M49 protein or the streptococcal fibronectin-binding protein SfbI. In contrast, pretreatment of the NZ131 speB mutant with SPE B did not influence sulfated polysaccharide-mediated uptake by CHO-pgs745 cells. The results indicate that the SPE B protease specifically alters bacterial cell surface proteins and thereby influences pathogen uptake.


2014 ◽  
Vol 6 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Anja Ochel ◽  
Manfred Rohde ◽  
Gursharan S. Chhatwal ◽  
Susanne R. Talay

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1691-1691
Author(s):  
Jonathan I. Creamer ◽  
Peter R. Panizzi ◽  
Paul E. Bock

Abstract Streptococcus pyogenes fibronectin-binding Protein (SfbX), expressed by emm12 and emm49 strains of S. pyogenes, binds fibronectin through COOH-terminal interactions of the protein.1 SfbX NH2-terminal residues 54–229 share 21% identity to staphylocoagulase (SC) residues 107–321 from Tager 104 strain, which increases to 35% homology when conservative substitutions are considered. SC is a non-proteolytic activator of the central coagulation zymogen prothrombin (ProT). Our structure of the prethrombin 2 complex with a fully active SC fragment (SC(1-325)) showed that SC(1-325) consisted of two α-helical bundle domains and that the NH2-terminal dipeptide is critical for ProT activation via the molecular sexuality mechanism.2 In this mechanism, SC inserts its NH2-terminal Ile1 into the Asp194 pocket of the ProT catalytic domain, inducing conformational activation of the catalytic site. On the basis of its homology, SfbX has been postulated to be a member of the SC family of zymogen activator and adhesion proteins. Plasmids encoding a His6-tagged SfbX(1-312) tobacco etch virus proteinase-cleavable fusion protein and the viral proteinase were co-transformed into E. coli to enable generation of the native SfbX NH2-terminus (Ile-Ser-Asn) during purification. SfbX(1-312) was purified by affinity chromatography on ProT-Affigel and Ni2+-iminodiacetic acid-Sepharose. Active site-specific fluorescent probe labeling of a mixture of ProT and SfbX(1-312) showed covalent labeling of the ProT zymogen, demonstrating that SfbX(1-312) is a non-proteolytic activator of ProT. Incubation of ProT with the NH2-terminally blocked SfbX(1-312) fusion protein did not result in labeling of the active site, indicating that the native NH2-terminus is required for activation, and suggesting that SfbX(1-312) activates ProT through the molecular sexuality mechanism. In ProT activation assays measured by the appearance of chromogenic substrate activity, SfbX(1-312) activated ProT weakly and was more effective in activating prethrombin 1, lacking the fragment 1 domain of ProT. Preliminary binding studies using ProT and thrombin labeled at the catalytic site with fluorescence probes demonstrated binding of SfbX(1-312). SfbX(1-312) decreased thrombin activity toward D-Phe-Pip-Arg-pNA by 75%, with an apparent KD of ~20 nM, indicating that the thrombin catalytic site is perturbed by SfbX binding. Clotting assays showed that neither SfbX(1-312) nor a mixture of SfbX(1-312) and prethrombin 1 clotted human fibrinogen or plasma. Addition of 5 μM SfbX(1-312) to a factor V-dependent plasma clotting assay increased clotting times, indicating that SfbX(1-312) has an inhibitory effect. We conclude that SfbX(1-312) activates ProT conformationally, possibly through the molecular sexuality mechanism. SfbX(1-312) binds tightly to thrombin, perturbing its catalytic site, but does not clot human fibrinogen or plasma. Further studies are needed to determine whether ProT is the pathophysiological target zymogen of SfbX(1-312), to delineate the natural substrate of the SfbX(1-312)·ProT complex, and to elucidate the role of SfbX in the pathology of S. pyogenes infection.


1994 ◽  
Vol 13 (3) ◽  
pp. 531-539 ◽  
Author(s):  
Susanne R. Talay ◽  
Peter Valentin-Weigand ◽  
Kenneth N. Timmis ◽  
Gursharan S. Chhatwal

Sign in / Sign up

Export Citation Format

Share Document