Journal of Innate Immunity
Latest Publications


TOTAL DOCUMENTS

802
(FIVE YEARS 131)

H-INDEX

61
(FIVE YEARS 6)

Published By S. Karger Ag

1662-8128, 1662-811x

2021 ◽  
pp. 1-14
Author(s):  
Jane Fisher ◽  
Fredrik Kahn ◽  
Elena Wiebe ◽  
Pontus Gustafsson ◽  
Thomas Kander ◽  
...  

Heparin-binding protein (HBP) is a promising biomarker for the development and severity of sepsis. To guide its use, it is important to understand the factors that could lead to false-positive or negative results, such as inappropriate release and inadequate clearance of HBP. HBP is presumably released only by neutrophils, and the organs responsible for its elimination are unknown. In this study, we aimed to determine whether non-neutrophil cells can be a source of circulating HBP and which organs are responsible for its removal. We found that in two cohorts of neutropenic patients, 12% and 19% of patients in each cohort, respectively, had detectable plasma HBP levels. In vitro, three leukemia-derived monocytic cell lines and healthy CD14+ monocytes constitutively released detectable levels of HBP. When HBP was injected intravenously in rats, we found that plasma levels of HBP decreased rapidly, with a distribution half-life below 10 min and an elimination half-life of 1–2 h. We measured HBP levels in the liver, spleen, kidneys, lungs, and urine using both ELISA and immunofluorescence quantitation, and found that the majority of HBP was present in the liver, and a small amount was present in the spleen. Immunofluorescence imaging indicated that HBP is associated mainly with hepatocytes in the liver and monocytes/macrophages in the spleen. The impact of hematologic malignancies and liver diseases on plasma HBP levels should be explored further in clinical studies.


2021 ◽  
pp. 1-14
Author(s):  
Gunnar Pejler ◽  
Sultan Alanazi ◽  
Mirjana Grujic ◽  
Jeremy Adler ◽  
Anna-Karin Olsson ◽  
...  

Previous research has indicated an intimate functional communication between mast cells (MCs) and neutrophils during inflammatory conditions, but the nature of such communication is not fully understood. Activated neutrophils are known to release DNA-containing extracellular traps (neutrophil extracellular traps [NETs]) and, based on the known ability of tryptase to interact with negatively charged polymers, we here hypothesized that tryptase might interact with NET-contained DNA and thereby regulate NET formation. In support of this, we showed that tryptase markedly enhances NET formation in phorbol myristate acetate-activated human neutrophils. Moreover, tryptase was found to bind vividly to the NETs, to cause proteolysis of core histones and to cause a reduction in the levels of citrullinated histone-3. Secretome analysis revealed that tryptase caused increased release of numerous neutrophil granule compounds, including gelatinase, lactoferrin, and myeloperoxidase. We also show that DNA can induce the tetrameric, active organization of tryptase, suggesting that NET-contained DNA can maintain tryptase activity in the extracellular milieu. In line with such a scenario, DNA-stabilized tryptase was shown to efficiently degrade numerous pro-inflammatory compounds. Finally, we showed that tryptase is associated with NET formation in vivo in a melanoma setting and that NET formation in vivo is attenuated in mice lacking tryptase expression. Altogether, these findings reveal that NET formation can be regulated by MC tryptase, thus introducing a novel mechanism of communication between MCs and neutrophils.


2021 ◽  
pp. 1-15
Author(s):  
Finja C. Hansen ◽  
Aftab Nadeem ◽  
Kathryn L. Browning ◽  
Mario Campana ◽  
Artur Schmidtchen ◽  
...  

Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs. Using confocal microscopy and flow cytometry, we show that both clathrin-dependent and clathrin-independent pathways are involved in the internalization of the prototypic TCP GKY25 in RAW264.7 and human monocyte-derived M1 macrophages, whereas the uptake of GKY25 in monocytic THP-1 cells is mainly dynamin-dependent. Internalized GKY25 was transported to endosomes and finally lysosomes, where it remained detectable for up to 10 h. Comparison of GKY25 uptake with that of the natural occurring TCPs HVF18 and FYT21 indicates that the pathway of TCP endocytosis is not only cell type-dependent but also depends on the length and composition of the peptide as well as the presence of LPS and bacteria. Finally, using neutron reflectometry, we show that the observed differences between HVF18 and the other 2 TCPs may be explained partially by differences in membrane insertion. Taken together, we show that TCPs are differentially internalized into monocytes and macrophages.


2021 ◽  
pp. 1-11
Author(s):  
Morten Hedetoft ◽  
Martin Bruun Madsen ◽  
Cecilie Bo Hansen ◽  
Ole Hyldegaard ◽  
Peter Garred

The hyperinflammatory burden is immense in necrotizing soft-tissue infection (NSTI). The complement system is a key during the innate immune response and may be a promising target to reduce the inflammatory response, potentially improving the clinical outcome. However, complement activation and its association to disease severity and survival remain unknown in NSTI. Therefore, we prospectively enrolled patients with NSTI and sampled blood at admission and once daily for the following 3 days. Plasma C4c, C4d, C3bc, and C3dg and the terminal complement complex (TCC) were evaluated using ELISA techniques. In total, 242 patients were included with a median age of 62 years, with a 60% male predominance. All-cause 30-day mortality was 17% (95% confidence interval [CI] 13–23) with a follow-up of &#x3e;98%. C4c and C3dg were negatively correlated with Simplified Acute Physiology Score II (<i>Rho</i> −0.22, <i>p</i> &#x3c; 0.001 and <i>Rho</i> −0.17, <i>p</i> = 0.01). Patients with septic shock (<i>n</i> = 114, 47%) had higher levels of baseline TCC than those in non-shock patients (18 vs. 14, <i>p</i> &#x3c; 0.001). TCC correlated with the Sequential Organ Failure Assessment (SOFA) score (<i>Rho</i> 0.19, <i>p</i> = 0.004). In multivariate Cox regression analysis (adjusted for age, sex, comorbidity, and SOFA score), high baseline C4d (&#x3e;20 ng/mL) and the combination of high C4d and TCC (&#x3e;31 arbitrary units/mL) were associated with increased 30-day mortality (hazard ratio [HR] 3.26, 95% CI 1.56–6.81 and HR 5.12, 95% CI 2.15–12.23, respectively). High levels of both C4d and TCC demonstrated a negative predictive value of 0.87. In conclusion, we found that in patients with NSTI, complement activation correlated with the severity of the disease. High baseline C4d and combination of high C4d and TCC are associated with increased 30-day mortality. Low baseline C4d or TCC indicates a higher probability of survival.


2021 ◽  
pp. 1-20
Author(s):  
Gyöngyi Cinege ◽  
Lilla B. Magyar ◽  
Attila L. Kovács ◽  
Zita Lerner ◽  
Gábor Juhász ◽  
...  

Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in <i>Drosophila ananassae</i> after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.


2021 ◽  
pp. 1-11
Author(s):  
Eleni Karakike ◽  
George N. Dalekos ◽  
Ioannis Koutsodimitropoulos ◽  
Maria Saridaki ◽  
Chryssa Pourzitaki ◽  
...  

<b><i>Background:</i></b> Macrophage activation-like syndrome (MALS) and complex immune dysregulation (CID) often underlie acute respiratory distress (ARDS) in COVID-19. We aimed to investigate the effect of personalized immunotherapy on clinical improvement of critical COVID-19. <b><i>Methods:</i></b> In this open-label prospective trial, 102 patients with ARDS by SARS-CoV-2 were screened for MALS (ferritin &#x3e;4,420 ng/mL) and CID (ferritin ≤4,420 ng/mL and low human leukocyte antigen (HLA)-DR expression on CD14-monocytes). Patients with MALS or CID with increased aminotransferases received intravenous anakinra; those with CID and normal aminotransferases received tocilizumab. The primary outcome was ≥25% decrease in the Sequential Organ Failure Assessment (SOFA) score and/or 50% increase in the respiratory ratio by day 8; 28-day mortality, change of SOFA score by day 28, serum biomarkers, and cytokine production by mononuclear cells were secondary endpoints. <b><i>Results:</i></b> The primary study endpoint was met in 58.3% of anakinra-treated patients and in 33.3% of tocilizumab-treated patients (<i>p</i>: 0.01). Most patients in both groups received dexamethasone as standard of care. No differences were found in secondary outcomes, mortality, and SOFA score changes. Ferritin decreased among anakinra-treated patients; interleukin-6, soluble urokinase plasminogen activator receptor, and HLA-DR expression increased among tocilizumab-treated patients. Survivors by day 28 who received anakinra were distributed to lower severity levels of the WHO clinical progression scale. Greater incidence of secondary infections was found with tocilizumab treatment. <b><i>Conclusion:</i></b> Immune assessment resulted in favorable anakinra responses among critically ill patients with COVID-19 and features of MALS<i>.</i>


2021 ◽  
pp. 1-15
Author(s):  
Edwin Leong ◽  
Zheng Pang ◽  
Andrew W. Stadnyk ◽  
Tong-Jun Lin

Mast cells (MCs) are key mediators of allergic inflammation through the activation of cross-linked immunoglobulin E (IgE) bound to the high-affinity IgE receptor (FcϵRI) on the cell surface, leading to the release of biologically potent mediators, either from preformed granules or newly synthesized. Pharmacological inhibitors have been developed to target a key signaling protein phosphatase in this pathway, calcineurin, yet there is a lack of genetic and definitive evidence for the various isoforms of calcineurin subunits in FcϵRI-mediated responses. In this study, we hypothesized that deficiency in the calcineurin Aα isoform will result in a decreased allergic immune response by the MCs. In a model of passive cutaneous anaphylaxis, there was a reduction in vascular permeability in MC-deficient mouse tissues reconstituted with calcineurin subunit A (CnAα) gene-knockout (<i>CnAα</i><sup>−/−</sup>) MCs, and in vitro experiments identified a significant reduction in release of preformed mediators from granules. Furthermore, released levels of de novo synthesized cytokines were reduced upon FcϵRI activation of <i>CnAα</i><sup>−/−</sup> MCs in vitro. Characterizing the mechanisms associated with this deficit response, we found a significant impairment of nuclear factor of kappa light polypeptide gene enhancer in B cell phosphorylation and impaired nuclear factor kappa-light-chain-enhancer of activated B-cell inhibitor alpha (NF-κB) activation. Thus, we concluded that <i>CnAα</i> contributes to the release of preformed mediators and newly synthesized mediators from FcϵRI-mediated activation of MCs, and this regulation includes NF-κB signaling.


2021 ◽  
pp. 1-14
Author(s):  
Li-Ting Song ◽  
Hiroyuki Tada ◽  
Takashi Nishioka ◽  
Eiji Nemoto ◽  
Takahisa Imamura ◽  
...  

Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is constitutively produced by endothelial cells and plays a vital role in maintaining vascular homeostasis. Chronic periodontitis is an inflammatory disease characterized by bleeding of periodontal tissues that support the tooth. In this study, we aimed to determine the role of PAI-1 produced by endothelial cells in response to infections caused by the primary periodontal pathogen Porphyromonas gingivalis. We demonstrated that P. gingivalis infection resulted in significantly reduced PAI-1 levels in human endothelial cells. This reduction in PAI-1 levels could be attributed to the proteolysis of PAI-1 by P. gingivalis proteinases, especially lysine-specific gingipain-K (Kgp). We demonstrated the roles of these degradative enzymes in the endothelial cells using a Kgp-specific inhibitor and P. gingivalis gingipain-null mutants, in which the lack of the proteinases resulted in the absence of PAI-1 degradation. The degradation of PAI-1 by P. gingivalis induced a delayed wound healing response in endothelial cell layers via the low-density lipoprotein receptor-related protein. Our results collectively suggested that the proteolysis of PAI-1 in endothelial cells by gingipains of P. gingivalis might lead to the deregulation of endothelial homeostasis, thereby contributing to the permeabilization and dysfunction of the vascular endothelial barrier.


2021 ◽  
pp. 1-18
Author(s):  
Agaristi Lamprokostopoulou ◽  
Ute Römling

Within the last 60 years, microbiological research has challenged many dogmas such as bacteria being unicellular microorganisms directed by nutrient sources; these investigations produced new dogmas such as cyclic diguanylate monophosphate (cyclic di-GMP) second messenger signaling as a ubiquitous regulator of the fundamental sessility/motility lifestyle switch on the single-cell level. Successive investigations have not yet challenged this view; however, the complexity of cyclic di-GMP as an intracellular bacterial signal, and, less explored, as an extracellular signaling molecule in combination with the conformational flexibility of the molecule, provides endless opportunities for cross-kingdom interactions. Cyclic di-GMP-directed microbial biofilms commonly stimulate the immune system on a lower level, whereas host-sensed cyclic di-GMP broadly stimulates the innate and adaptive immune responses. Furthermore, while the intracellular second messenger cyclic di-GMP signaling promotes bacterial biofilm formation and chronic infections, oppositely, <i>Salmonella</i> Typhimurium cellulose biofilm inside immune cells is not endorsed. These observations only touch on the complexity of the interaction of biofilm microbial cells with its host. In this review, we describe the Yin and Yang interactive concepts of biofilm formation and cyclic di-GMP signaling using <i>S</i>. Typhimurium as an example.


Sign in / Sign up

Export Citation Format

Share Document