scholarly journals Transduction of Hepatocytes after Neonatal Delivery of a Moloney Murine Leukemia Virus Based Retroviral Vector Results in Long-Term Expression of β-Glucuronidase in Mucopolysaccharidosis VII Dogs

2002 ◽  
Vol 5 (2) ◽  
pp. 141-153 ◽  
Author(s):  
Lingfei Xu ◽  
Mark E. Haskins ◽  
John R. Melniczek ◽  
Cuihua Gao ◽  
Margaret A. Weil ◽  
...  
1998 ◽  
Vol 72 (6) ◽  
pp. 5313-5317 ◽  
Author(s):  
Theodora Hatziioannou ◽  
Sandrine Valsesia-Wittmann ◽  
Stephen J. Russell ◽  
François-Loïc Cosset

ABSTRACT We describe retrovirus particles carrying the fowl plague virus (FPV) hemagglutinin (HA). When expressed in cells providing Moloney murine leukemia virus (MoMLV) Gag and Pol proteins and alacZ retroviral vector, FPV HA was found to be efficiently expressed, correctly processed, and stably incorporated into retroviral particles. HA-bearing retroviruses were infectious with a wide host range and were only 10-fold less infectious than retroviruses carrying wild-type MLV retroviral envelopes. We also coexpressed HA proteins in retroviral particles with chimeric MoMLV-derived envelope glycoproteins that efficiently retarget virus attachment but are only weakly fusogenic. Our results suggest that HA can in some cases enhance the fusion ability of these retroviral particles, depending on the cell surface molecule that is used as a receptor.


1988 ◽  
Vol 8 (10) ◽  
pp. 4079-4087 ◽  
Author(s):  
J C Young ◽  
O N Witte

The BCR/ABL gene, formed by the Philadelphia chromosome translocation (Ph1) of human chronic myelogenous leukemia, encodes an altered ABL gene product, P210. P210 is strongly implicated in the malignant process of chronic myelogenous leukemia, but it precise role is unknown. Infection of long-term bone marrow cultures enriched for B-lymphoid cell types with a Moloney murine leukemia virus retroviral vector containing the BCR/ABL cDNA resulted in clonal outgrowths of immature B-lymphoid cells which expressed abundant P210 kinase activity. Surprisingly, infection of long-term myeloid lineage-enriched cultures also resulted in clonal outgrowths of immature B-lymphoid cells. The P210-expressing lymphoid cell lines resulting from either type of culture were resistant to the lethal effects of corticosteroids. These findings indicate that high levels of P210 expressed from a Moloney murine leukemia virus long terminal repeat preferentially stimulate the growth of immature B-lineage cells, and this effect is apparent even in myeloid lineage-enriched cultures, in which few if any lymphoid cells can be detected prior to infection.


Author(s):  
Sylvie Roy ◽  
Karim Ghani ◽  
Pedro O. de Campos-Lima ◽  
Manuel Caruso

ABSTRACTThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak that started in China at the end of 2019 has rapidly spread to become pandemic. Several investigational vaccines that have already been tested in animals and humans were able to induce neutralizing antibodies against the SARS-CoV-2 spike (S) protein, however protection and long-term efficacy in humans remain to be demonstrated.We have investigated if a virus-like particle (VLP) derived from Moloney murine leukemia virus (MLV) could be engineered to become a candidate SARS-CoV-2 vaccine amenable to mass production. First, we showed that a codon optimized version of the S protein could migrate efficiently to the cell membrane. However, efficient production of infectious viral particles was only achieved with stable expression of a shorter version of S in its C-terminal domain (ΔS) in 293 cells that express MLV Gag-Pol (293GP). The incorporation of ΔS was 15-times more efficient into VLPs as compared to the full-length version, and that was not due to steric interference between the S cytoplasmic tail and the MLV capsid. Indeed, a similar result was also observed with extracellular vesicles released from parental 293 and 293GP cells. The amount of ΔS incorporated into VLPs released from producer cells was robust, with an estimated 1.25 μg/ml S2 equivalent (S is comprised of S1 and S2). Thus, a scalable platform that has the potential for production of pan-coronavirus VLP vaccines has been established. The resulting nanoparticles could potentially be used alone or as a boost for other immunization strategies for COVID-19.IMPORTANCESeveral candidate COVID-19 vaccines have already been tested in humans, but their protective effect and long-term efficacy are uncertain. Therefore, it is necessary to continue developing new vaccine strategies that could be more potent and/or that would be easier to manufacture in large-scale. Virus-like particle (VLP) vaccines are considered highly immunogenic and have been successfully developed for human papilloma virus as well as hepatitis and influenza viruses. In this study, we report the generation of a robust Moloney murine leukemia virus platform that produces VLPs containing the spike of SARS-CoV-2. This vaccine platform that is compatible with lyophilization could simplify storage and distribution logistics immensely.


1990 ◽  
Vol 10 (12) ◽  
pp. 6512-6523 ◽  
Author(s):  
B A Sullenger ◽  
T C Lee ◽  
C A Smith ◽  
G E Ungers ◽  
E Gilboa

NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies.


1988 ◽  
Vol 8 (10) ◽  
pp. 4079-4087
Author(s):  
J C Young ◽  
O N Witte

The BCR/ABL gene, formed by the Philadelphia chromosome translocation (Ph1) of human chronic myelogenous leukemia, encodes an altered ABL gene product, P210. P210 is strongly implicated in the malignant process of chronic myelogenous leukemia, but it precise role is unknown. Infection of long-term bone marrow cultures enriched for B-lymphoid cell types with a Moloney murine leukemia virus retroviral vector containing the BCR/ABL cDNA resulted in clonal outgrowths of immature B-lymphoid cells which expressed abundant P210 kinase activity. Surprisingly, infection of long-term myeloid lineage-enriched cultures also resulted in clonal outgrowths of immature B-lymphoid cells. The P210-expressing lymphoid cell lines resulting from either type of culture were resistant to the lethal effects of corticosteroids. These findings indicate that high levels of P210 expressed from a Moloney murine leukemia virus long terminal repeat preferentially stimulate the growth of immature B-lineage cells, and this effect is apparent even in myeloid lineage-enriched cultures, in which few if any lymphoid cells can be detected prior to infection.


1998 ◽  
Vol 72 (1) ◽  
pp. 853-856 ◽  
Author(s):  
Laure Teysset ◽  
Jane C. Burns ◽  
Hiroko Shike ◽  
Barbara L. Sullivan ◽  
Alain Bucheton ◽  
...  

ABSTRACT The gypsy element of Drosophila melanogaster is the first retrovirus identified so far in invertebrates. Previous data suggest that gypsyENV-like ORF3 mediates viral infectivity. We have produced in the 293GP/LNhsp70lucL.3 human cell line a Moloney murine leukemia virus-based retroviral vector pseudotyped by the gypsyENV-like protein. We have shown by immunostaining that thegypsy envelope protein is produced in 293GP/LNhsp70lucL.3 cells and that vector particles collected from these cells can infect Drosophila cells. Our results provide direct evidence that the infectious property of gypsy is due to its ORF3 gene product.


1990 ◽  
Vol 10 (12) ◽  
pp. 6512-6523
Author(s):  
B A Sullenger ◽  
T C Lee ◽  
C A Smith ◽  
G E Ungers ◽  
E Gilboa

NIH 3T3 cells infected with Moloney murine leukemia virus (MoMLV) express high levels of virus-specific RNA. To inhibit replication of the virus, we stably introduced chimeric tRNA genes encoding antisense templates into NIH 3T3 cells via a retroviral vector. Efficient expression of hybrid tRNA-MoMLV antisense transcripts and inhibition of MoMLV replication were dependent on the use of a particular type of retroviral vector, the double-copy vector, in which the chimeric tRNA gene was inserted in the 3' long terminal repeat. MoMLV replication was inhibited up to 97% in cells expressing antisense RNA corresponding to the gag gene and less than twofold in cells expressing antisense RNA corresponding to the pol gene. RNA and protein analyses suggest that inhibition was exerted at the level of translation. These results suggest that RNA polymerase III-based antisense inhibition systems can be used to inhibit highly expressed viral genes and render cells resistant to viral replication via intracellular immunization strategies.


Sign in / Sign up

Export Citation Format

Share Document