fusion ability
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 0)

2022 ◽  
Vol 2146 (1) ◽  
pp. 012042
Author(s):  
Yongfu Liu

Abstract In order to improve the integration of digital prints, this paper proposes a new method of printmaking analog synthesis, that is, using interactive technology.. Firstly, Harris corner algorithm is used to collect and preprocess the adjacent feature points of digital printmaking image, and the texture features of digital printmaking image are extracted, so as to construct the texture information transmission model of digital printmaking image; Secondly, with the help of segmentation technology to process the digital print image, the dynamic feature segmentation is carried out, the local binary fitting method is used to enhance and repair the digital print image information, and the information fusion method based on interactive technology is used to complete the analog synthesis of digital print image; Finally, the simulation results show that the method has good performance of simulation synthesis and strong information fusion ability.


2021 ◽  
Vol 11 (8) ◽  
pp. 3397
Author(s):  
Gustavo Assunção ◽  
Nuno Gonçalves ◽  
Paulo Menezes

Human beings have developed fantastic abilities to integrate information from various sensory sources exploring their inherent complementarity. Perceptual capabilities are therefore heightened, enabling, for instance, the well-known "cocktail party" and McGurk effects, i.e., speech disambiguation from a panoply of sound signals. This fusion ability is also key in refining the perception of sound source location, as in distinguishing whose voice is being heard in a group conversation. Furthermore, neuroscience has successfully identified the superior colliculus region in the brain as the one responsible for this modality fusion, with a handful of biological models having been proposed to approach its underlying neurophysiological process. Deriving inspiration from one of these models, this paper presents a methodology for effectively fusing correlated auditory and visual information for active speaker detection. Such an ability can have a wide range of applications, from teleconferencing systems to social robotics. The detection approach initially routes auditory and visual information through two specialized neural network structures. The resulting embeddings are fused via a novel layer based on the superior colliculus, whose topological structure emulates spatial neuron cross-mapping of unimodal perceptual fields. The validation process employed two publicly available datasets, with achieved results confirming and greatly surpassing initial expectations.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Pasquale Picone ◽  
Gaetana Porcelli ◽  
Celeste Caruso Bavisotto ◽  
Domenico Nuzzo ◽  
Giacoma Galizzi ◽  
...  

Abstract Background Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. Results Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein–protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as a vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, the replacement of affected mitochondria with healthy ones could be a potential therapy for treating neuronal mitochondrial dysfunction-related diseases.


2021 ◽  
Vol 22 (1) ◽  
pp. 457
Author(s):  
Rejhana Kolašinac ◽  
Dirk Bier ◽  
Laura Schmitt ◽  
Andriy Yabluchanskiy ◽  
Bernd Neumaier ◽  
...  

Liposomes are highly biocompatible and versatile drug carriers with an increasing number of applications in the field of nuclear medicine and diagnostics. So far, only negatively charged liposomes with intercalated radiometals, e.g., 64Cu, 99mTc, have been reported. However, the process of cellular uptake of liposomes by endocytosis is rather slow. Cellular uptake can be accelerated by recently developed cationic liposomes, which exhibit extraordinarily high membrane fusion ability. The aim of the present study was the development of the formulation and the characterization of such cationic fusogenic liposomes with intercalated radioactive [131I]I− for potential use in therapeutic applications. The epithelial human breast cancer cell line MDA-MB-231 was used as a model for invasive cancer cells and cellular uptake of [131I]I− was monitored in vitro. Delivery efficiencies of cationic and neutral liposomes were compared with uptake of free iodide. The best cargo delivery efficiency (~10%) was achieved using cationic fusogenic liposomes due to their special delivery pathway of membrane fusion. Additionally, human blood cells were also incubated with cationic control liposomes and free [131I]I−. In these cases, iodide delivery efficiencies remained below 3%.


2020 ◽  
Author(s):  
Chiung-Ya Chen ◽  
Yu-Chi Chou ◽  
Yi-Ping Hsueh

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) exhibits two major variants based on mutations of its spike protein, i.e., the D614 prototype and G614 variant. Although neurological symptoms have been frequently reported in patients, it is still unclear whether SARS-CoV-2 impairs neuronal activity or function. Here, we show that expression of both D614 and G614 spike proteins is sufficient to induce phenotypes of impaired neuronal morphology, including defective dendritic spines and shortened dendritic length. Using spike protein-specific monoclonal antibodies, we found that D614 and G614 spike proteins show differential S1/S2 cleavage and cell fusion efficiency. Our findings provide an explanation for higher transmission of the G614 variant and the neurological manifestations observed in COVID-19 patients.


2020 ◽  
Author(s):  
Pasquale Picone ◽  
Gaetana Porcelli ◽  
Celeste Caruso Bavisotto ◽  
Domenico Nuzzo ◽  
Giacoma Galizzi ◽  
...  

Abstract Background: Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, subcellular fraction of isolated synaptic terminal that contain mitochondria, as mitochondrial delivery systems. Results: Synaptosomes preparation was validated by the presence of Synaptophysin and PSD95. Syn aptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/mL. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein-protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. Conclusions: Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, replacement of affected mitochondria with healthy ones could be a potential therapy for the treatment of neuronal mitochondrial dysfunction-related diseases.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 458
Author(s):  
Madoka Kawahara ◽  
Toshiya Wada ◽  
Fumitaka Momose ◽  
Eri Nobusawa ◽  
Yuko Morikawa

The H1N1 influenza pandemic vaccine has been developed from the A/California/07/09 (Cal) virus and the well-known high-yield A/Puerto Rico/8/34 (PR8) virus by classical reassortment and reverse genetics (RG) in eggs. Previous studies have suggested that Cal-derived chimeric hemagglutinin (HA) and neuraminidase (NA) improve virus yields. However, the cell-based vaccine of the H1N1 pandemic virus has been less investigated. RG viruses that contained Cal-derived chimeric HA and NA could be rescued in Madin–Darby canine kidney cells that expressed α2,6-sialyltransferase (MDCK-SIAT1). The viral growth kinetics and chimeric HA and NA properties were analyzed. We attempted to generate various RG viruses that contained Cal-derived chimeric HA and NA, but half of them could not be rescued in MDCK-SIAT1 cells. When both the 3′- and 5′-terminal regions of Cal HA viral RNA were replaced with the corresponding regions of PR8 HA, the RG viruses were rescued. Our results were largely consistent with those of previous studies, in which the N- and C-terminal chimeric HA slightly improved virus yield. Importantly, the chimeric HA, compared to Cal HA, showed cell fusion ability at a broader pH range, likely due to amino acid substitutions in the transmembrane region of HA. The rescued RG virus with high virus yield harbored the chimeric HA capable of cell fusion at a broader range of pH.


Development ◽  
2020 ◽  
Vol 147 (15) ◽  
pp. dev189985
Author(s):  
Naokazu Inoue ◽  
Takako Saito ◽  
Ikuo Wada

ABSTRACTGamete fusion is an indispensable process for bearing offspring. In mammals, sperm IZUMO1–oocyte JUNO recognition essentially carries out the primary step of this process. In oocytes, CD9 is also known to play a crucial role in gamete fusion. In particular, microvilli biogenesis through CD9 involvement appears to be a key event for successful gamete fusion, because CD9-disrupted oocytes produce short and sparse microvillous structures, resulting in almost no fusion ability with spermatozoa. In order to determine how CD9 and JUNO cooperate in gamete fusion, we analyzed the molecular profiles of each molecule in CD9- and JUNO-disrupted oocytes. Consequently, we found that CD9 is crucial for the exclusion of GPI-anchored proteins, such as JUNO and CD55, from the cortical actin cap region, suggesting strict molecular organization of the unique surface of this region. Through distinct surface compartmentalization due to CD9 governing, GPI-anchored proteins are confined to the appropriate fusion site of the oocyte.


Sign in / Sign up

Export Citation Format

Share Document