scholarly journals Avian Encephalomyelitis Virus Induces Apoptosis Via Major Structural Protein VP3

Virology ◽  
2002 ◽  
Vol 300 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Jue Liu ◽  
Ting Wei ◽  
Jimmy Kwang
2000 ◽  
Vol 81 (9) ◽  
pp. 2281-2287 ◽  
Author(s):  
Porntippa Nawagitgul ◽  
Igor Morozov ◽  
Steven R. Bolin ◽  
Perry A. Harms ◽  
Steven D. Sorden ◽  
...  

Porcine circovirus 2 (PCV2), a single-stranded DNA virus associated with post-weaning multisystemic wasting syndrome of swine, has two potential open reading frames, ORF1 and ORF2, greater than 600 nucleotides in length. ORF1 is predicted to encode a replication-associated protein (Rep) essential for replication of viral DNA, while ORF2 contains a conserved basic amino acid sequence at the N terminus resembling that of the major structural protein of chicken anaemia virus. Thus far, the structural protein(s) of PCV2 have not been identified. In this study, a viral structural protein of 30 kDa was identified in purified PCV2 particles. ORF2 of PCV2 was cloned into a baculovirus expression vector and the gene product was expressed in insect cells. The expressed ORF2 gene product had a molecular mass of 30 kDa, similar to that detected in purified virus particles. The recombinant ORF2 protein self-assembled to form capsid-like particles when viewed by electron microscopy. Antibodies against the ORF2 protein were detected in samples of sera obtained from pigs as early as 3 weeks after experimental infection with PCV2. These results show that the major structural protein of PCV2 is encoded by ORF2 and has a molecular mass of 30 kDa.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Milda Norkiene ◽  
Alma Gedvilaite

Heterologous gene expression is dependent on multistep processes involving regulation at the level of transcription, mRNA turnover, protein translation, and posttranslational modifications. Codon bias has a significant influence on protein yields. However, sometimes it is not clear which parameter causes observed differences in heterologous gene expression as codon adaptation typically optimizes many sequence properties at once. In the current study, we evaluated the influence of codon bias on heterologous production of human papillomavirus type 16 (HPV-16) major structural protein L1 in yeast by expressing five variants of codon-modified open reading frames (OFRs) encoding HPV-16 L1 protein. Our results showed that despite the high toleration of various codons used throughout the length of the sequence of heterologously expressed genes in transformed yeast, there was a significant positive correlation between the gene's expression level and the degree of its codon bias towards the favorable codon usage. The HPV-16 L1 protein expression in yeast can be optimized by adjusting codon composition towards the most preferred codon adaptation, and this effect most probably is dependent on the improved translational elongation.


2012 ◽  
Vol 442 (1) ◽  
pp. 57-60 ◽  
Author(s):  
M. A. Semashko ◽  
D. V. Rakitina ◽  
I. González ◽  
T. Canto ◽  
N. O. Kalinina ◽  
...  

1998 ◽  
Vol 142 (4) ◽  
pp. 899-912 ◽  
Author(s):  
Fátima Almeida ◽  
Rainer Saffrich ◽  
Wilhelm Ansorge ◽  
Maria Carmo-Fonseca

The coiled body is a distinct subnuclear domain enriched in small nuclear ribonucleoprotein particles (snRNPs) involved in processing of pre-mRNA. Although the function of the coiled body is still unknown, current models propose that it may have a role in snRNP biogenesis, transport, or recycling. Here we describe that anti-coilin antibodies promote a specific disappearance of the coiled body in living human cells, thus providing a novel tool for the functional analysis of this structure. Monoclonal antibodies (mAbs) were raised against recombinant human coilin, the major structural protein of the coiled body. Four mAbs are shown to induce a progressive disappearance of coiled bodies within ∼6 h after microinjection into the nucleus of HeLa cells. After their disappearance, coiled bodies are not seen to re-form, although injected cells remain viable for at least 3 d. Epitope mapping reveals that the mAbs recognize distinct amino acid motifs scattered along the complete coilin sequence. By 24 and 48 h after injection of antibodies that promote coiled body disappearance, splicing snRNPs are normally distributed in the nucleoplasm, the nucleolus remains unaffected, and the cell cycle progresses normally. Furthermore, cells devoid of coiled bodies for ∼24 h maintain the ability to splice both adenoviral pre-mRNAs and transiently overexpressed human β-globin transcripts. In conclusion, within the time range of this study, no major nuclear abnormalities are detected after coiled body disappearance.


Sign in / Sign up

Export Citation Format

Share Document