scholarly journals Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies

2010 ◽  
Vol 5 (4) ◽  
pp. 447-449 ◽  
Author(s):  
Pei-Luen Jiang ◽  
Jason T.C. Tzen
2000 ◽  
Vol 81 (9) ◽  
pp. 2281-2287 ◽  
Author(s):  
Porntippa Nawagitgul ◽  
Igor Morozov ◽  
Steven R. Bolin ◽  
Perry A. Harms ◽  
Steven D. Sorden ◽  
...  

Porcine circovirus 2 (PCV2), a single-stranded DNA virus associated with post-weaning multisystemic wasting syndrome of swine, has two potential open reading frames, ORF1 and ORF2, greater than 600 nucleotides in length. ORF1 is predicted to encode a replication-associated protein (Rep) essential for replication of viral DNA, while ORF2 contains a conserved basic amino acid sequence at the N terminus resembling that of the major structural protein of chicken anaemia virus. Thus far, the structural protein(s) of PCV2 have not been identified. In this study, a viral structural protein of 30 kDa was identified in purified PCV2 particles. ORF2 of PCV2 was cloned into a baculovirus expression vector and the gene product was expressed in insect cells. The expressed ORF2 gene product had a molecular mass of 30 kDa, similar to that detected in purified virus particles. The recombinant ORF2 protein self-assembled to form capsid-like particles when viewed by electron microscopy. Antibodies against the ORF2 protein were detected in samples of sera obtained from pigs as early as 3 weeks after experimental infection with PCV2. These results show that the major structural protein of PCV2 is encoded by ORF2 and has a molecular mass of 30 kDa.


1993 ◽  
Vol 101 (1) ◽  
pp. 267-276 ◽  
Author(s):  
JTC. Tzen ◽  
Yz. Cao ◽  
P. Laurent ◽  
C. Ratnayake ◽  
AHC. Huang
Keyword(s):  
Seed Oil ◽  

1998 ◽  
Vol 39 (9) ◽  
pp. 935-941 ◽  
Author(s):  
E. C.F. Chen ◽  
S. S.K. Tai ◽  
C.-C. Peng ◽  
J. T.C. Tzen
Keyword(s):  
Seed Oil ◽  

2004 ◽  
Vol 42 (7-8) ◽  
pp. 601-608 ◽  
Author(s):  
Li-Jen Lin ◽  
Jason T.C. Tzen
Keyword(s):  
Seed Oil ◽  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanchao Yuan ◽  
Xinzhe Cao ◽  
Haijun Zhang ◽  
Chunying Liu ◽  
Yuxi Zhang ◽  
...  

Abstract Background Cotton is not only a major textile fiber crop but also a vital oilseed, industrial, and forage crop. Oleosins are the structural proteins of oil bodies, influencing their size and the oil content in seeds. In addition, the degradation of oleosins is involved in the mobilization of lipid and oil bodies during seed germination. However, comprehensive identification and the systematic analysis of the Oleosin gene (OLEOs) family have not been conducted in cotton. Results An in-depth analysis has enabled us to identify 25 and 24 OLEOs in tetraploid cotton species G. hirsutum and G. barbadense, respectively, while 12 and 13 OLEOs were identified in diploid species G. arboreum and G. raimondii, respectively. The 74 OLEOs were further clustered into three lineages according to the phylogenetic tree. Synteny analysis revealed that most of the OLEOs were conserved and that WGD or segmental duplications might drive their expansion. The transmembrane helices in GhOLEO proteins were predicted, and three transmembrane models were summarized, in which two were newly proposed. A total of 24 candidate miRNAs targeting GhOLEOs were predicted. Three highly expressed oil-related OLEOs, GH_A07G0501 (SL), GH_D10G0941 (SH), and GH_D01G1686 (U), were cloned, and their subcellular localization and function were analyzed. Their overexpression in Arabidopsis increased seed oil content and decreased seed germination rates. Conclusion We identified OLEO gene family in four cotton species and performed comparative analyses of their relationships, conserved structure, synteny, and gene duplication. The subcellular localization and function of three highly expressed oil-related OLEOs were detected. These results lay the foundation for further functional characterization of OLEOs and improving seed oil content.


Sign in / Sign up

Export Citation Format

Share Document