Utility of PCR in Situ for Detecting Viral Infections

Author(s):  
Gerard J. Nuovo
Keyword(s):  
Author(s):  
J. R. Hully ◽  
K. R. Luehrsen ◽  
K. Aoyagi ◽  
C. Shoemaker ◽  
R. Abramson

The development of PCR technology has greatly accelerated medical research at the genetic and molecular levels. Until recently, the inherent sensitivity of this technique has been limited to isolated preparations of nucleic acids which lack or at best have limited morphological information. With the obvious exception of cell lines, traditional PCR or reverse transcription-PCR (RT-PCR) cannot identify the cellular source of the amplified product. In contrast, in situ hybridization (ISH) by definition, defines the anatomical location of a gene and/or it’s product. However, this technique lacks the sensitivity of PCR and cannot routinely detect less than 10 to 20 copies per cell. Consequently, the localization of rare transcripts, latent viral infections, foreign or altered genes cannot be identified by this technique. In situ PCR or in situ RT-PCR is a combination of the two techniques, exploiting the sensitivity of PCR and the anatomical definition provided by ISH. Since it’s initial description considerable advances have been made in the application of in situ PCR, improvements in protocols, and the development of hardware dedicated to in situ PCR using conventional microscope slides. Our understanding of the importance of viral latency or viral burden in regards to HIV, HPV, and KSHV infections has benefited from this technique, enabling detection of single viral copies in cells or tissue otherwise thought to be normal. Clearly, this technique will be useful tool in pathobiology especially carcinogenesis, gene therapy and manipulations, the study of rare gene transcripts, and forensics.


2001 ◽  
Vol 82 (2) ◽  
pp. 350-354 ◽  
Author(s):  
Yuhong Xiao ◽  
Shigemi Sato ◽  
Takaaki Oguchi ◽  
Kaori Kudo ◽  
Yoshihito Yokoyama ◽  
...  

Der Pathologe ◽  
1998 ◽  
Vol 19 (4) ◽  
pp. 313-317 ◽  
Author(s):  
P. I. Schiller ◽  
U. Puchta ◽  
A. J. L. Ogilvie ◽  
A. Graf ◽  
P. Kind ◽  
...  
Keyword(s):  

2003 ◽  
Vol 36 (3) ◽  
pp. 401-407 ◽  
Author(s):  
Pedro Viñas Albajar ◽  
Sônia Velihovetchi Laredo ◽  
Mariano Brasil Terrazas ◽  
José Rodrigues Coura

Dois casos fatais de miocardiopatia chagásica crônica dilatada são relatados pela primeira vez em pacientes autóctones do rio Negro, Estado do Amazonas. Ambos os casos, um homem de 45 anos de idade e uma mulher de 44, nasceram e viveram toda a vida na região do Rio Negro, no norte do estado do Amazonas, tendo sido picados numerosas vezes por triatomineos silvestres em piaçabais da área. Os pacientes que tiveram as reações sorológicas positivas para anticorpos anti-Trypanosoma cruzi (imunofluorescência, ELISA e Wertern blot) desenvolveram nos últimos 5-7 anos um quadro de insuficiência cardíaca progressivo, com aumento global da área cardíaca, bloqueios atrioventricular e de ramo esquerdo e extrassístoles ventriculares, faleceram de insuficiência cardíaca irreversível. Um dos casos em que foi feita a biópsia cardíaca cirúrgica pós-mortem, mostrou na histopatologia, miocardite crônica com infiltrado mononuclear difuso, com áreas de adensamento celular, fibrose, dissociação, fragmentação e hialinização de fibras cardíacas, sugestivo de miocardite chagásica crônica e o PCR in situ foi positivo para Trypanosoma cruzi.


2016 ◽  
Vol 113 (21) ◽  
pp. 6035-6040 ◽  
Author(s):  
Sunil K. Sukumaran ◽  
Karen K. Yee ◽  
Shusuke Iwata ◽  
Ramana Kotha ◽  
Roberto Quezada-Calvillo ◽  
...  

The primary sweet sensor in mammalian taste cells for sugars and noncaloric sweeteners is the heteromeric combination of type 1 taste receptors 2 and 3 (T1R2+T1R3, encoded by Tas1r2 and Tas1r3 genes). However, in the absence of T1R2+T1R3 (e.g., in Tas1r3 KO mice), animals still respond to sugars, arguing for the presence of T1R-independent detection mechanism(s). Our previous findings that several glucose transporters (GLUTs), sodium glucose cotransporter 1 (SGLT1), and the ATP-gated K+ (KATP) metabolic sensor are preferentially expressed in the same taste cells with T1R3 provides a potential explanation for the T1R-independent detection of sugars: sweet-responsive taste cells that respond to sugars and sweeteners may contain a T1R-dependent (T1R2+T1R3) sweet-sensing pathway for detecting sugars and noncaloric sweeteners, as well as a T1R-independent (GLUTs, SGLT1, KATP) pathway for detecting monosaccharides. However, the T1R-independent pathway would not explain responses to disaccharide and oligomeric sugars, such as sucrose, maltose, and maltotriose, which are not substrates for GLUTs or SGLT1. Using RT-PCR, quantitative PCR, in situ hybridization, and immunohistochemistry, we found that taste cells express multiple α-glycosidases (e.g., amylase and neutral α glucosidase C) and so-called intestinal “brush border” disaccharide-hydrolyzing enzymes (e.g., maltase-glucoamylase and sucrase-isomaltase). Treating the tongue with inhibitors of disaccharidases specifically decreased gustatory nerve responses to disaccharides, but not to monosaccharides or noncaloric sweeteners, indicating that lingual disaccharidases are functional. These taste cell-expressed enzymes may locally break down dietary disaccharides and starch hydrolysis products into monosaccharides that could serve as substrates for the T1R-independent sugar sensing pathways.


Sign in / Sign up

Export Citation Format

Share Document