The Condensed Matrix of Mature Chromaffin Granules

Author(s):  
Ole Terland ◽  
Torgeir Flatmark
Keyword(s):  
Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


1989 ◽  
Vol 67 (6) ◽  
pp. 306-310 ◽  
Author(s):  
Morris F. Manolson ◽  
Judith M. Percy ◽  
David K. Apps ◽  
Xiao-Song Xie ◽  
Dennis K. Stone ◽  
...  

The evolution of the endomembrane systems of eukaryotic cells can be examined by exploring the evolutionary origins of the endomembrane H+-ATPases. Recent studies suggest that certain polypeptides are common to all H+ pumps of this type. Tonoplast H+ -ATPase from Beta vulgaris L. was purified and antibodies raised to two of its subunits. Each of these antisera reacted with a polypeptide of the corresponding size in bovine chromaffin granules, bovine clathrincoated vesicles, and yeast vacuolar membranes, suggesting common structural features and a common ancestor for endomembrane H+-ATPases of different organelles and different kingdoms. The antiserum raised against the 57-kDa polypeptide of plant tonoplast H+ -ATPase also reacted with subunit "a" of the H+-ATPase from the obligately anaerobic bacterium Clostridium pasteurianum and to the α subunit of the H+ -ATPase from Escherichia coli. There was no reactivity with chloroplast or mitochondrial ATPases. These results are discussed in relation to recent sequence data which suggest that endomembrane H+-ATPases may be evolutionarily related to the F0F1 ATPases.Key words: H+ -ATPase, evolution, immunology, vacuole, endomembrane.


Sign in / Sign up

Export Citation Format

Share Document