Random Search Under Additive Noise

Author(s):  
Luc Devroye ◽  
Adam Krzyzak
Keyword(s):  
2010 ◽  
Vol 69 (19) ◽  
pp. 1681-1702
Author(s):  
V. V. Lukin ◽  
S. K. Abramov ◽  
A. V. Popov ◽  
P. Ye. Eltsov ◽  
Benoit Vozel ◽  
...  

1979 ◽  
Vol 44 (2) ◽  
pp. 328-339
Author(s):  
Vladimír Herles

Contradictious results published by different authors about the dynamics of systems with random parameters have been examined. Statistical analysis of the simple 1st order system proves that the random parameter can cause a systematic difference in the dynamic behavior that cannot be (in general) described by the usual constant-parameter model with the additive noise at the output.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 139 ◽  
Author(s):  
Vincenzo Cutello ◽  
Georgia Fargetta ◽  
Mario Pavone ◽  
Rocco A. Scollo

Community detection is one of the most challenging and interesting problems in many research areas. Being able to detect highly linked communities in a network can lead to many benefits, such as understanding relationships between entities or interactions between biological genes, for instance. Two different immunological algorithms have been designed for this problem, called Opt-IA and Hybrid-IA, respectively. The main difference between the two algorithms is the search strategy and related immunological operators developed: the first carries out a random search together with purely stochastic operators; the last one is instead based on a deterministic Local Search that tries to refine and improve the current solutions discovered. The robustness of Opt-IA and Hybrid-IA has been assessed on several real social networks. These same networks have also been considered for comparing both algorithms with other seven different metaheuristics and the well-known greedy optimization Louvain algorithm. The experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable optimization methods for community detection, outperforming all compared algorithms.


Author(s):  
Jochen Jungeilges ◽  
Elena Maklakova ◽  
Tatyana Perevalova

AbstractWe study the price dynamics generated by a stochastic version of a Day–Huang type asset market model with heterogenous, interacting market participants. To facilitate the analysis, we introduce a methodology that allows us to assess the consequences of changes in uncertainty on the dynamics of an asset price process close to stable equilibria. In particular, we focus on noise-induced transitions between bull and bear states of the market under additive as well as parametric noise. Our results are obtained by combining the stochastic sensitivity function (SSF) approach, a mixture of analytical and numerical techniques, due to Mil’shtein and Ryashko (1995) with concepts and techniques from the study of non-smooth 1D maps. We find that the stochastic sensitivity of the respective bull and bear equilibria in the presence of additive noise is higher than under parametric noise. Thus, recurrent transitions are likely to be observed already for relatively low intensities of additive noise.


2021 ◽  
pp. 1-13
Author(s):  
Haitao Liu ◽  
Yew-Soon Ong ◽  
Ziwei Yu ◽  
Jianfei Cai ◽  
Xiaobo Shen

2020 ◽  
Vol 29 (1) ◽  
pp. 93-108
Author(s):  
Ganghua Yuan

Abstract In this paper, we study two inverse problems for stochastic parabolic equations with additive noise. One is to determinate the history of a stochastic heat process and the random heat source simultaneously by the observation at the final time 𝑇. For this inverse problem, we obtain a conditional stability result. The other one is an inverse source problem to determine two kinds of sources simultaneously by the observation at the final time and on the lateral boundary. The main tool for solving the inverse problems is a new global Carleman estimate for the stochastic parabolic equation.


2018 ◽  
Vol 27 (4) ◽  
pp. 643-666 ◽  
Author(s):  
J. LENGLER ◽  
A. STEGER

One of the easiest randomized greedy optimization algorithms is the following evolutionary algorithm which aims at maximizing a function f: {0,1}n → ℝ. The algorithm starts with a random search point ξ ∈ {0,1}n, and in each round it flips each bit of ξ with probability c/n independently at random, where c > 0 is a fixed constant. The thus created offspring ξ' replaces ξ if and only if f(ξ') ≥ f(ξ). The analysis of the runtime of this simple algorithm for monotone and for linear functions turned out to be highly non-trivial. In this paper we review known results and provide new and self-contained proofs of partly stronger results.


Sign in / Sign up

Export Citation Format

Share Document