State Reconstruction from Data

Keyword(s):  
2021 ◽  
Vol 20 (7) ◽  
pp. 889-904
Author(s):  
M. Prieto ◽  
Javier Etayo ◽  
I. Olariaga

AbstractThe class Eurotiomycetes (Ascomycota, Pezizomycotina) comprises important fungi used for medical, agricultural, industrial and scientific purposes. Eurotiomycetes is a morphologically and ecologically diverse monophyletic group. Within the Eurotiomycetes, different ascoma morphologies are found including cleistothecia and perithecia but also apothecia or stromatic forms. Mazaediate representatives (with a distinct structure in which loose masses of ascospores accumulate to be passively disseminated) have evolved independently several times. Here we describe a new mazaediate species belonging to the Eurotiomycetes. The multigene phylogeny produced (7 gene regions: nuLSU, nuSSU, 5.8S nuITS, mtSSU, RPB1, RPB2 and MCM7) placed the new species in a lineage sister to Eurotiomycetidae. Based on the evolutionary relationships and morphology, a new subclass, a new order, family and genus are described to place the new species: Cryptocalicium blascoi. This calicioid species occurs on the inner side of loose bark strips of Cupressaceae (Cupressus, Juniperus). Morphologically, C. blascoi is characterized by having minute apothecioid stalked ascomata producing mazaedia, clavate bitunicate asci with hemiamyloid reaction, presence of hamathecium and an apothecial external surface with dark violet granules that becomes turquoise green in KOH. The ancestral state reconstruction analyses support a common ancestor with open ascomata for all deep nodes in Eurotiomycetes and the evolution of closed ascomata (cleistothecioid in Eurotiomycetidae and perithecioid in Chaetothyriomycetidae) from apothecioid ancestors. The appropriateness of the description of a new subclass for this fungus is also discussed.


2021 ◽  
Vol 2 ◽  
pp. 1-10
Author(s):  
Sanjaya Lohani ◽  
Thomas A. Searles ◽  
Brian T. Kirby ◽  
Ryan T. Glasser

2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Jan Peřina ◽  
Ondřej Haderka ◽  
Václav Michálek ◽  
Martin Hamar

2018 ◽  
Vol 98 (6) ◽  
Author(s):  
Zichen Yang ◽  
Ze-Yang Fan ◽  
Liang-Zhu Mu ◽  
Heng Fan

Author(s):  
A. P. Wijaya

The use of remotely wave sensing by a marine radar is increasingly needed to provide wave information for the sake of safety and operational effectiveness in many offshore activities. Reconstruction of radar images needs to be carried out since radar images are a poor representation of the sea surface elevation: effects like shadowing and tilt determine the backscattered intensity of the images. In [1], the sea state reconstruction and wave propagation to the radar has been tackled successfully for synthetic radar images of linear seas, except for a scaling in the vertical direction. The determination of the significant wave height from the shadowed images only has been described in [2]. This paper will summarize these methods, and provides the first results for the extension to nonlinear seas.


Sign in / Sign up

Export Citation Format

Share Document