scholarly journals A new lineage of mazaediate fungi in the Eurotiomycetes: Cryptocaliciomycetidae subclass. nov., based on the new species Cryptocalicium blascoi and the revision of the ascoma evolution

2021 ◽  
Vol 20 (7) ◽  
pp. 889-904
Author(s):  
M. Prieto ◽  
Javier Etayo ◽  
I. Olariaga

AbstractThe class Eurotiomycetes (Ascomycota, Pezizomycotina) comprises important fungi used for medical, agricultural, industrial and scientific purposes. Eurotiomycetes is a morphologically and ecologically diverse monophyletic group. Within the Eurotiomycetes, different ascoma morphologies are found including cleistothecia and perithecia but also apothecia or stromatic forms. Mazaediate representatives (with a distinct structure in which loose masses of ascospores accumulate to be passively disseminated) have evolved independently several times. Here we describe a new mazaediate species belonging to the Eurotiomycetes. The multigene phylogeny produced (7 gene regions: nuLSU, nuSSU, 5.8S nuITS, mtSSU, RPB1, RPB2 and MCM7) placed the new species in a lineage sister to Eurotiomycetidae. Based on the evolutionary relationships and morphology, a new subclass, a new order, family and genus are described to place the new species: Cryptocalicium blascoi. This calicioid species occurs on the inner side of loose bark strips of Cupressaceae (Cupressus, Juniperus). Morphologically, C. blascoi is characterized by having minute apothecioid stalked ascomata producing mazaedia, clavate bitunicate asci with hemiamyloid reaction, presence of hamathecium and an apothecial external surface with dark violet granules that becomes turquoise green in KOH. The ancestral state reconstruction analyses support a common ancestor with open ascomata for all deep nodes in Eurotiomycetes and the evolution of closed ascomata (cleistothecioid in Eurotiomycetidae and perithecioid in Chaetothyriomycetidae) from apothecioid ancestors. The appropriateness of the description of a new subclass for this fungus is also discussed.

2022 ◽  
Author(s):  
Alexander Istvan MacLeod ◽  
Parth K Raval ◽  
Simon Stockhorst ◽  
Michael Knopp ◽  
Eftychios Frangedakis ◽  
...  

The first plastid evolved from an endosymbiotic cyanobacterium in the common ancestor of the Archaeplastida. The transformative steps from cyanobacterium to organelle included the transfer of control over developmental processes; a necessity for the host to orchestrate, for example, the fission of the organelle. The plastids of almost all embryophytes divide independent from nuclear division, leading to cells housing multiple plastids. Hornworts, however, are monoplastidic (or near-monoplastidic) and their photosynthetic organelles are a curious exception among embryophytes for reasons such as the occasional presence of pyrenoids. Here we screened genomic and transcriptomic data of eleven hornworts for components of plastid developmental pathways. We find intriguing differences among hornworts and specifically highlight that pathway components involved in regulating plastid development and biogenesis were differentially lost in this group of bryophytes. In combination with ancestral state reconstruction, our data suggest that hornworts have reverted back to a monoplastidic phenotype due to the combined loss of two plastid division-associated genes: ARC3 and FtsZ2.


Phytotaxa ◽  
2021 ◽  
Vol 478 (1) ◽  
pp. 33-48
Author(s):  
FENG-YAO LONG ◽  
LI-WU QIN ◽  
YUAN-PIN XIAO ◽  
KEVIN D. HYDE ◽  
SHAO-XIAN WANG ◽  
...  

Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp. nov. was found as a parasite on wasps (Hymenoptera). The new species is introduced with evidence from morphology and molecular analysis. This species is distinguished from closely related species by white to faint yellow stromata, shorter ascomata and asci, and smaller ascospores. We provide a phylogeny for Ophiocordyceps based on combined LSU, ITS, TEF1α and RPB2 DNA sequence data and the taxonomic status of the species is briefly discussed.


2021 ◽  
Author(s):  
Raees Khan ◽  
Robert S Hill

Abstract Background and Aims The three relict genera Pherosphaera, Microcachrys and Saxegothaea in Podocarpaceae produce quite distinct seed cone types in comparison to other genera and does not form a clade along with Acmopyle. The detailed seed cone morpho-anatomy of these three relict genera and affinities with other podocarps are poorly known. This study aims to understand the seed cone morpho-anatomy and affinities among these three disjunct relict genera and with other podocarps. Methods We comparatively analysed the seed cone morpho-anatomical traits of the three podocarps genera and used ancestral state reconstruction to understand the evolution of these traits. Key Results We described the seed cone morpho-anatomical structures of the three relict genera in detail. The three genera produce aggregated multiovulate cones. Both Microcachrys and Saxegothaea has an asymmetrical free cup-like epimatium. Both species of Pherosphaera lack epimatium. The ancestral state reconstruction implies that the presence of epimatium is an ancestral trait in podocarps and independently lost in Pherosphaera and Phyllocladus. The seed cones are fleshy in Microcachrys and non-fleshy in Saxegothaea and Pherosphaera. The seed cone macrofossils of both extinct and living podocarps also show the presence of epimatium and fleshiness in podocarps. Conclusions Altogether, the morpho-anatomy suggests Pherosphaera, Microcachrys and Saxegothaea present affinities with each other and other podocarps but the reconstruction of ancestral seed cone in Podcarpaceae is quite complex due to multiple convergent evolutions of several structures. These structures (e.g. epimatium, aril, receptaculum) are of low taxonomic value but of great evolutionary and ecologically significance and are responsive adaptations to ever-changing environmental conditions.


2018 ◽  
Vol 8 (6) ◽  
pp. 2121-2134 ◽  
Author(s):  
Joanna Klim ◽  
Arkadiusz Gładki ◽  
Roza Kucharczyk ◽  
Urszula Zielenkiewicz ◽  
Szymon Kaczanowski

2018 ◽  
Vol 52 (2) ◽  
pp. 379-385 ◽  
Author(s):  
S. L. Stephenson ◽  
Yu. K. Novozhilov ◽  
P. Wellman

A new species of Cribraria, described herein as C. bicolor, appeared in moist chamber cultures on samples of the bark of Eucalyptus sp. collected at two localities in Australia. The morphology of representative specimens was examined by light and scanning electron microscopy, and micrographs of relevant morphological details of sporocarps and spores are provided. The species has a number of distinct and unique morphological features, including a glossy bright-violet globose sporotheca and a two-colored long stalk which is bright-red over the lower one-third and light yellow or lemon-yellow over the upper two-thirds. The combination of these characteristics as well as a shallow calyculus which is dark-violet when viewed under a dissecting microscope and bright red in transmitted light when mounted in lactophenol makes C. bicolor a well-defined morphospecies when compared to all other species of Cribraria. The stability of the taxonomic characters of the species was confirmed by an examination of a number of specimens.


2011 ◽  
Vol 20 (1) ◽  
pp. 161-173
Author(s):  
A.P. Kassatkina

Resuming published and own data, a revision of classification of Chaetognatha is presented. The family Sagittidae Claus & Grobben, 1905 is given a rank of subclass, Sagittiones, characterised, in particular, by the presence of two pairs of sac-like gelatinous structures or two pairs of fins. Besides the order Aphragmophora Tokioka, 1965, it contains the new order Biphragmosagittiformes ord. nov., which is a unique group of Chaetognatha with an unusual combination of morphological characters: the transverse muscles present in both the trunk and the tail sections of the body; the seminal vesicles simple, without internal complex compartments; the presence of two pairs of lateral fins. The only family assigned to the new order, Biphragmosagittidae fam. nov., contains two genera. Diagnoses of the two new genera, Biphragmosagitta gen. nov. (type species B. tarasovi sp. nov. and B. angusticephala sp. nov.) and Biphragmofastigata gen. nov. (type species B. fastigata sp. nov.), detailed descriptions and pictures of the three new species are presented.


2019 ◽  
Vol 11 (10) ◽  
pp. 2824-2849 ◽  
Author(s):  
Paweł Mackiewicz ◽  
Adam Dawid Urantówka ◽  
Aleksandra Kroczak ◽  
Dorota Mackiewicz

Abstract Mitochondrial genes are placed on one molecule, which implies that they should carry consistent phylogenetic information. Following this advantage, we present a well-supported phylogeny based on mitochondrial genomes from almost 300 representatives of Passeriformes, the most numerous and differentiated Aves order. The analyses resolved the phylogenetic position of paraphyletic Basal and Transitional Oscines. Passerida occurred divided into two groups, one containing Paroidea and Sylvioidea, whereas the other, Passeroidea and Muscicapoidea. Analyses of mitogenomes showed four types of rearrangements including a duplicated control region (CR) with adjacent genes. Mapping the presence and absence of duplications onto the phylogenetic tree revealed that the duplication was the ancestral state for passerines and was maintained in early diverged lineages. Next, the duplication could be lost and occurred independently at least four times according to the most parsimonious scenario. In some lineages, two CR copies have been inherited from an ancient duplication and highly diverged, whereas in others, the second copy became similar to the first one due to concerted evolution. The second CR copies accumulated over twice as many substitutions as the first ones. However, the second CRs were not completely eliminated and were retained for a long time, which suggests that both regions can fulfill an important role in mitogenomes. Phylogenetic analyses based on CR sequences subjected to the complex evolution can produce tree topologies inconsistent with real evolutionary relationships between species. Passerines with two CRs showed a higher metabolic rate in relation to their body mass.


Phytotaxa ◽  
2015 ◽  
Vol 205 (2) ◽  
pp. 90 ◽  
Author(s):  
XIN-LEI FAN ◽  
KEVIN D. HYDE ◽  
JIAN-KUI LIU ◽  
YING-MEI LIANG ◽  
CHENG-MING TIAN

The family Botryosphaeriaceae encompasses important plant-associated pathogens, endophytes and saprobes with a wide geographical and host distribution. Two dark-spored botryosphaeriaceous taxa associated with Rhus typhina dieback and canker disease were collected from Ningxia Province, in northwestern China. Morphology and multigene analysis (ITS, LSU and EF-1α) clearly distinguished this clade as a distinct species in the genus. Phaeobotryon rhois is introduced and illustrated as a new species in this paper. The species is characterized by its globose, unilocular fruiting bodies and small, brown, 1-septate conidia. It can be distinguished from the similar species P. cercidis, P. cupressi, P. mamane and P. quercicola based on host association and conidial size and colour.


Zootaxa ◽  
2021 ◽  
Vol 5068 (1) ◽  
pp. 81-98
Author(s):  
KEN MAEDA ◽  
CHUYA SHINZATO ◽  
RYO KOYANAGI ◽  
TAIGA KUNISHIMA ◽  
HIROZUMI KOBAYASHI ◽  
...  

Two new species of Rhinogobius found in streams on central part of Palawan Island, Philippines are described. The two new species, Rhinogobius estrellae and Rhinogobius tandikan share unique transverse rows of sensory papillae on the cheek with Rhinogobius similis Gill, 1859, but differ from the latter in fin ray counts, arrangement of the scales, etc. The two new species are distinguished from each other by the pectoral-fin ray count, the longitudinal- and predorsal-scale counts, and colouration of the body. Rhinogobius estrellae new species and R. tandikan new species have been found allopatrically in a stream within Malatgao River system flowing into the Sulu Sea and in the Cayulo River flowing into the South China Sea, respectively. The Malatgao River system is the southernmost habitat of the genus Rhinogobius. Rhinogobius similis had been considered as the only member of the most basal lineage of this genus, but our mitochondrial genome analysis suggested that the two new species are additional members of this lineage. They are considered to be relicts of their common ancestor with R. similis, which probably had a wider distribution.  


MycoKeys ◽  
2019 ◽  
Vol 57 ◽  
pp. 1-30
Author(s):  
Beata Guzow-Krzemińska ◽  
Emmanuël Sérusiaux ◽  
Pieter P. G. van den Boom ◽  
A. Maarten Brand ◽  
Annina Launis ◽  
...  

Six new Micarea species are described from Europe. Phylogenetic analyses, based on three loci, i.e. mtSSU rDNA, Mcm7 and ITS rDNA and ancestral state reconstructions, were used to evaluate infra-group divisions and the role of secondary metabolites and selected morphological characters on the taxonomy in the M.prasina group. Two main lineages were found within the group. The Micareamicrococca clade consists of twelve species, including the long-known M.micrococca and the newly described M.microsorediata, M.nigra and M.pauli. Within this clade, most species produce methoxymicareic acid, with the exceptions of M.levicula and M.viridileprosa producing gyrophoric acid. The M.prasina clade includes the newly described M.azorica closely related to M.prasina s.str., M.aeruginoprasina sp. nov. and M.isidioprasina sp. nov. The species within this clade are characterised by the production of micareic acid, with the exception of M.herbarum which lacks any detectable substances and M.subviridescens that produces prasinic acid. Based on our reconstructions, it was concluded that the ancestor of the M.prasina group probably had a thallus consisting of goniocysts, which were lost several times during evolution, while isidia and soredia evolved independently at multiple times. Our research supported the view that the ancestor of M.prasina group did not produce any secondary substances, but they were gained independently in different lineages, such as methoxymicareic acid which is restricted to M.micrococca and allied species or micareic acid present in the M.prasina clade.


Sign in / Sign up

Export Citation Format

Share Document