Explicit Secular Equations for Surface Waves in an Anisotropic Elastic Half-Space from Rayleigh to Today

Author(s):  
T. C. T. Ting
Author(s):  
Y. B. Fu ◽  
G. A. Rogerson ◽  
W. F. Wang

We consider the propagation of free surface waves on an elastic half-space that has a localized geometric inhomogeneity perpendicular to the direction of wave propagation (such waves are known as topography-guided surface waves). Our aim is to investigate how such a weak inhomogeneity modifies the surface-wave speed slightly. We first recover previously known results for isotropic materials and then present additional results for a generally anisotropic elastic half-space assuming only one plane of material symmetry. It is shown that a topography-guided surface wave in the present context may or may not propagate depending on a number of factors. In particular, they cannot propagate if the original two-dimensional surface wave on a flat half-space is supersonic with respect to the speed of anti-plane shear waves. For the case when a topography-guided surface wave may exist, the existence and computation of wave speed correction is reduced to the solution of a simple eigenvalue problem whose properties are previously well understood. As a by-product of our analysis, we deduce that there exists at least one topography-guided surface wave on an isotropic elastic half-space, and that it is unique when the geometric inhomogeneity has sufficiently small amplitude.


1971 ◽  
Vol 38 (4) ◽  
pp. 899-905 ◽  
Author(s):  
L. B. Freund

Three-dimensional wave propagation in an elastic half space is considered. The half space is traction free on half its boundary, while the remaining part of the boundary is free of shear traction and is constrained against normal displacement by a smooth, rigid barrier. A time-harmonic surface wave, traveling on the traction free part of the surface, is obliquely incident on the edge of the barrier. The amplitude and the phase of the resulting reflected surface wave are determined by means of Laplace transform methods and the Wiener-Hopf technique. Wave propagation in an elastic half space in contact with two rigid, smooth barriers is then considered. The barriers are arranged so that a strip on the surface of uniform width is traction free, which forms a wave guide for surface waves. Results of the surface wave reflection problem are then used to geometrically construct dispersion relations for the propagation of unattenuated guided surface waves in the guiding structure. The rate of decay of body wave disturbances, localized near the edges of the guide, is discussed.


Author(s):  
G. K. ZAKIR’YANOVA ◽  
◽  
L. A. ALEXEYEVA ◽  

The first boundary value problem of the theory of elasticity for an anisotropic elastic half-space is solved when a transport load moves along its surface. The subsonic Raleigh case is considered, when the velocity of motion is less than the velocity of propagation of bulk and surface elastic waves. The Green’s tensor of the transport boundary value problem is constructed and on its basis the solution of boundary value problems for a wide class of distributed traffic loads is given. To solve the problem, the methods of tensor and linear algebra, integral Fourier transform, and operator method for solving systems of differential equations were used. The obtained solution makes it possible to investigate the dynamics of the rock mass for a wide class of transport loads, in a wide range of velocities, both low velocities and high velocities, and to evaluate the strength properties of the rock mass under the influence of road transport. In particular, determine the permissible velocities of its movement and carrying capacity. In addition, a investigation on its basis of the movement of the day surface along the route will make it possible to establish criteria for the seismic resistance of ground structures and the permissible distances of their location from the route.


1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


Sign in / Sign up

Export Citation Format

Share Document