Utilization of Immobilized Humic Organic Matter for in-situ Subsurface Remediation

Author(s):  
G.U. Balcke ◽  
A. Georgi ◽  
S. Woszidlo ◽  
F.-D. Kopinke ◽  
J. Poerschmann
2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


2013 ◽  
Vol 10 (1) ◽  
pp. 67-80 ◽  
Author(s):  
W. R. Hunter ◽  
A. Jamieson ◽  
V. A. I. Huvenne ◽  
U. Witte

Abstract. The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0–1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal–bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.


Geoderma ◽  
2019 ◽  
Vol 338 ◽  
pp. 1-4 ◽  
Author(s):  
Wenbing Tan ◽  
Beidou Xi ◽  
Guoan Wang ◽  
Xiaosong He ◽  
Rutai Gao ◽  
...  

2017 ◽  
Vol 125 ◽  
pp. 350-359 ◽  
Author(s):  
B.G. Fox ◽  
R.M.S. Thorn ◽  
A.M. Anesio ◽  
D.M. Reynolds

1996 ◽  
Vol 44 (2) ◽  
pp. 103-110 ◽  
Author(s):  
J.W. Cone ◽  
A.H. Van Gelder ◽  
A.M. Van Vuuren

The amount of rumen fermentable organic matter (FOM) can be calculated using tables, taking into account the amount of digestible organic matter, the content of fat and fermentation products, and the amount of starch and protein escaping rumen fermentation, or FOM can be calculated using in situ incubations. An in vitro method is described to predict FOM using amylase and other carbohydrate degrading enzymes. FOM estimated by the enzymic method showed a moderate correlation (Rsuperscript 2 = 0.71) with FOM estimated by the in situ method. The relationship could be improved by separating the high crude fibre samples (Rsuperscript 2 = 0.88) from the other samples (Rsuperscript 2 = 0.77). Because degradation rates with the enzymic method were high compared with the assumed rumen passage rates, it proved that FOM could be predicted with a similar accuracy (Rsuperscript 2 = 0.76 - 0.80) by the undegraded fraction after 24 h.


Sign in / Sign up

Export Citation Format

Share Document