AIRBORNE LASER ALTIMETRY FOR PREDICTIVE MODELING OF COASTAL STORM-SURGE FLOODING

Author(s):  
TIM L. WEBSTER ◽  
DONALD L. FORBES
2017 ◽  
Vol 21 (4) ◽  
pp. 139-150 ◽  
Author(s):  
William Solecki ◽  
Robin Leichenko ◽  
David Eisenhauer

AbstractIt is five years since Hurricane Sandy heavily damaged the New York- New Jersey Metropolitan region, and the fuller character of the long-term response can be better understood. The long-term response to Hurricane Sandy and the flooding risks it illustrated are set in myriad of individual and collective decisions taken during the time following the event. While the physical vulnerability of this region to storm surge flooding and climate change risks including sea level rise has been well-documented within the scholarly literature, Sandy’s impact placed decision-makingpost extreme events into the forefront of public and private discussions about the appropriate response. Some of the most fundamental choices were made by individual homeowners who houses were damaged and in some cases made uninhabitable following the storm. These individuals were forced to make decisions regarding where they would live and whether Sandy’s impact would result in their moving. In the disaster recovery and rebuilding context, these early household struggles about whether to leave or stay are often lost in the wider and longer narrative of recovery. To examine this early phase, this paper presents results of a research study that documented the ephemeral evidence of the initial phase of recovery in coastal communities that were heavily impacted by Hurricane Sandy’s storm surge and flooding. Hurricane Sandy and the immediate response to the storm created conditions for a potential large-scale transformation with respect to settlement of the coastal zone. In the paper, we examine and analyze survey and interview results of sixty-one residents and two dozen local stakeholders and practitioners to understand the stresses and transitions experienced by flooded households and the implications for the longer term resiliency of the communities in which they are located.


2006 ◽  
Vol 26 (1) ◽  
pp. 18-25 ◽  
Author(s):  
K. Zhang ◽  
S.-C. Chen ◽  
P. Singh ◽  
K. Saleem ◽  
N. Zhao

2014 ◽  
Vol 60 (221) ◽  
pp. 489-499 ◽  
Author(s):  
Andreas Münchow ◽  
Laurie Padman ◽  
Helen A. Fricker

AbstractPetermann Gletscher, northwest Greenland, drains 4% of the Greenland ice sheet into Nares Strait. Its floating ice shelf retreated from 81 to 48 km in length during two large calving events in 2010 and 2012. We document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser altimetry and MODIS visible imagery. The recent ice-shelf velocity, measured by tracking surface features between flights in 2010 and 2011, is ~1.25 km a−1, ~15–30% faster than estimates made before 2010. The steady- state along-flow ice divergence represents 6.3 Gta−1 mass loss through basal melting (~5Gta−1) and surface melting and sublimation (~1.0Gta−1). Airborne laser altimeter data reveal thinning, both along a thin central channel and on the thicker ambient ice shelf. From 2007 to 2010 the ice shelf thinned by ~5 m a−1, which represents a non-steady mass loss of ~4.1 Gta−1. We suggest that thinning in the basal channels structurally weakened the ice shelf and may have played a role in the recent calving events.


2016 ◽  
Author(s):  
Kelly M. Brunt ◽  
Robert L. Hawley ◽  
Eric R. Lutz ◽  
Michael Studinger ◽  
John G. Sonntag ◽  
...  

Author(s):  
C. J. van der Veen ◽  
Y. Ahn ◽  
B. M. Csatho ◽  
E. Mosley-Thompson ◽  
W. B. Krabill

Sign in / Sign up

Export Citation Format

Share Document