SHEWANELLA: NOVEL STRATEGIES FOR ANAEROBIC RESPIRATION

Author(s):  
Thomas J. DiChristina ◽  
David J. Bates ◽  
Justin L. Burns ◽  
Jason R. Dale ◽  
Amanda N. Payne
2017 ◽  
Vol 28 (1-2) ◽  
pp. 84-95
Author(s):  
O. M. Moroz ◽  
S. O. Hnatush ◽  
Ch. I. Bohoslavets ◽  
T. M. Hrytsun’ ◽  
B. M. Borsukevych

Sulfate reducing bacteria, capable to reductive transformation of different nature pollutants, used in biotechnologies of purification of sewage, contaminated by carbon, sulfur, nitrogen and metal compounds. H2S formed by them sediment metals to form of insoluble sulfides. Number of metals can be used by these microorganisms as electron acceptors during anaerobic respiration. Because under the influence of metal compounds observed slowing of bacteria metabolism, selection isolated from technologically modified ecotops resistant to pollutions strains is important task to create a new biotechnologies of purification. That’s why the purpose of this work was to study the influence of potassium dichromate, present in medium, on reduction of sulfate and nitrate ions by sulfate reducing bacteria Desulfovibrio desulfuricans IMV K-6, Desulfovibrio sp. Yav-6 and Desulfovibrio sp. Yav-8, isolated from Yavorivske Lake, to estimate the efficiency of possible usage of these bacteria in technologies of complex purification of environment from dangerous pollutants. Bacteria were cultivated in modified Kravtsov-Sorokin medium without SO42- and FeCl2×4H2O for 10 days. To study the influence of K2Cr2O7 on usage by bacteria SO42- or NO3- cells were seeded to media with Na2SO4×10H2O or NaNO3 and K2Cr2O7 at concentrations of 1.74 mM for total content of electron acceptors in medium 3.47 mM (concentration of SO42- in medium of standard composition). Cells were also seeded to media with 3.47 mM Na2SO4×10H2O, NaNO3 or K2Cr2O7 to investigate their growth in media with SO42-, NO3- or Cr2O72- as sole electron acceptor (control). Biomass was determined by turbidymetric method, content of sulfate, nitrate, dichromate, chromium (III) ions, hydrogen sulfide or ammonia ions in cultural liquid – by spectrophotometric method. It was found that K2Cr2O7 inhibits growth (2.2 and 1.3 times) and level of reduction by bacteria sulfate or nitrate ions (4.2 and 3.0 times, respectively) at simultaneous addition into cultivation medium of 1.74 mM SO42- or NO3- and 1.74 mM Cr2O72-, compared with growth and level of reduction of sulfate or nitrate ions in medium only with SO42- or NO3- as sole electron acceptor. Revealed that during cultivation of bacteria in presence of equimolar amount of SO42- or NO3- and Cr2O72-, last used by bacteria faster, content of Cr3+ during whole period of bacteria cultivation exceeded content H2S or NH4+. K2Cr2O7 in medium has most negative influence on dissimilatory reduction by bacteria SO42- than NO3-, since level of nitrate ions reduction by cells in medium with NO3- and Cr2O72- was a half times higher than level of sulfate ions reduction by it in medium with SO42- and Cr2O72-. The ability of bacteria Desulfovibrio sp. to priority reduction of Cr2O72- and after their exhaustion − NO3- and SO42- in the processes of anaerobic respiration can be used in technologies of complex purification of environment from toxic compounds.


2020 ◽  
Vol 21 (14) ◽  
pp. 1539-1550
Author(s):  
Nur S. Ismail ◽  
Suresh K. Subbiah ◽  
Niazlin M. Taib

Background: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism. Methods: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog). Results and Discussion: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid. Conclusion: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.


2020 ◽  
Author(s):  
Dong-Feng Liu ◽  
Xue-Na Huang ◽  
Rui-Fen Cheng ◽  
Di Min ◽  
Lei Cheng ◽  
...  

Microbiology ◽  
2013 ◽  
Vol 82 (4) ◽  
pp. 404-409 ◽  
Author(s):  
N. N. Mordkovich ◽  
T. A. Voeikova ◽  
L. M. Novikova ◽  
I. A. Smirnov ◽  
V. K. Il’in ◽  
...  

1996 ◽  
Vol 199 (2) ◽  
pp. 427-433
Author(s):  
U Hentschel ◽  
S Hand ◽  
H Felbeck

Heat production and nitrate respiration rates were measured simultaneously in the gill tissue of Lucinoma aequizonata. This marine bivalve contains chemoautotrophic, intracellular, bacterial symbionts in its gill tissue. The symbionts show constitutive anaerobic respiration, using nitrate instead of oxygen as a terminal electron acceptor. An immediate increase in heat production was observed after the addition of nitrate to the perfusion medium of the calorimeter and this was accompanied by the appearance of nitrite in the effluent sea water. The nitrate-stimulated heat output was similar under aerobic and anaerobic conditions, which is consistent with the constitutive nature of nitrate respiration. The amount of heat released was dependent on the concentration of nitrate in the perfusion medium. At nitrate concentrations between 0.5 and 5 mmol l-1, the total heat production was increased over twofold relative to unstimulated baseline values. A mean (±s.e.m.) experimental enthalpy of -130±22.6 kJ mol-1 nitrite (N=13) was measured for this concentration range.


1994 ◽  
Vol 11 (6) ◽  
pp. 1169-1179 ◽  
Author(s):  
Vincent Méjean ◽  
Chantal lobbi-Nivol ◽  
Michèle Lepelletier ◽  
Gérard Giordano ◽  
Marc Chippaux ◽  
...  

2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


1996 ◽  
Vol 166 (3) ◽  
pp. 204-210 ◽  
Author(s):  
Thomas J. Lie ◽  
Thomas Pitta ◽  
E. R. Leadbetter ◽  
Walter Godchaux III. ◽  
Jared R. Leadbetter

2020 ◽  
Author(s):  
Sandeep Chakraborty

The Covid19 pandemic [1], triggered by novel strain of a coronavirus SARS-Cov2 [2] has spread globally like a wildfire [3] after being first detected in Wuhan.Previous studies from China, Brazil and the US:Previously, several sequencing datasets - some of them published [4–9], others having sequencing data sub- mitted in NCBI (with no associated publications) [10–13] - have revealed the metagenome in these patients from different parts of the world. The overwhelming presence of anaerobic bacteria (very low concentration of oxygen kills them) in these patients has led to the theory that antibiotics (like doxycycline/Metronidazole) targeting these specific organisms may provide better clinical results [14].Two more studies added - patients from Peru and Cambodia:Here, two more studies from Peru (Table 1) and Cambodia (Table 2) provide further corroboration to the anaerobic bacteria theory. These anaerobic bacteria have virtually colonized the metagenome - pushing other aerobic species out of the niche, disrupting the homeostasis. Around 30% and 23% of the reads from Peru and Cambodia are bacterial, respectively. This is not observed in other patients, even when having chronic issues [15].Common opportunistic anaerobic bacteria in this global metagenomic Covid19 datasetHere, I enumerate common opportunistic anaerobic bacteria present in this global metagenomic Covid19 dataset (Table 3). Any or multiple of these might become the main colonizer after SARS-Cov2 infection in Covid19. The trigger of such an event is still elusive. However, once this happens, some of these bacte- ria express hemoglobin degrading proteins [16], heme-binding proteins sequestering heme after hemoglobin degradation [17], ‘plundering‘ iron, and thereby sequestering oxygen [18]. Hypoxia could also result from formate, the by-product of anaerobic respiration, which inhibits mitochondrial cytochrome oxidase, causing hypoxia at the cellular level [19].


Sign in / Sign up

Export Citation Format

Share Document