scholarly journals Identification of a Second Two-Component Signal Transduction System That Controls Fosfomycin Tolerance and Glycerol-3-Phosphate Uptake

2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexis Proutière ◽  
Laurence du Merle ◽  
Bruno Périchon ◽  
Hugo Varet ◽  
Myriam Gominet ◽  
...  

ABSTRACT Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis. Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Matthias Wehrmann ◽  
Charlotte Berthelot ◽  
Patrick Billard ◽  
Janosch Klebensberger

ABSTRACTInPseudomonas putidaKT2440, two pyrroloquinoline quinone-dependent ethanol dehydrogenases (PQQ-EDHs) are responsible for the periplasmic oxidation of a broad variety of volatile organic compounds (VOCs). Depending on the availability of rare earth elements (REEs) of the lanthanide series (Ln3+), we have recently reported that the transcription of the genes encoding the Ca2+-utilizing enzyme PedE and the Ln3+-utilizing enzyme PedH are inversely regulated. With adaptive evolution experiments, site-specific mutations, transcriptional reporter fusions, and complementation approaches, we now demonstrate that the PedS2/PedR2 (PP_2671/PP_2672) two-component system (TCS) plays a central role in the observed REE-mediated switch of PQQ-EDHs inP. putida. We provide evidence that in the absence of lanthanum (La3+), the sensor histidine kinase PedS2 phosphorylates its cognate LuxR-type response regulator PedR2, which in turn not only activatespedEgene transcription but is also involved in repression ofpedH. Our data further suggest that the presence of La3+lowers kinase activity of PedS2, either by the direct binding of the metal ions to the periplasmic region of PedS2 or by an uncharacterized indirect interaction, leading to reduced levels of phosphorylated PedR2. Consequently, the decreasingpedEexpression and concomitant alleviation ofpedHrepression causes—in conjunction with the transcriptional activation of thepedHgene by a yet unknown regulatory module—the Ln3+-dependent transition from PedE- to PedH-catalyzed oxidation of alcoholic VOCs.IMPORTANCEThe function of lanthanides for methanotrophic and methylotrophic bacteria is gaining increasing attention, while knowledge about the role of rare earth elements (REEs) in nonmethylotrophic bacteria is still limited. The present study investigates the recently described differential expression of the two PQQ-EDHs ofP. putidain response to lanthanides. We demonstrate that a specific TCS is crucial for their inverse regulation and provide evidence for a dual regulatory function of the LuxR-type response regulator involved. Thus, our study represents the first detailed characterization of the molecular mechanism underlying the REE switch of PQQ-EDHs in a nonmethylotrophic bacterium and stimulates subsequent investigations for the identification of additional genes or phenotypic traits that might be coregulated during REE-dependent niche adaptation.


2005 ◽  
Vol 187 (3) ◽  
pp. 1105-1113 ◽  
Author(s):  
Sheng-Mei Jiang ◽  
Michael J. Cieslewicz ◽  
Dennis L. Kasper ◽  
Michael R. Wessels

ABSTRACT Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.


2020 ◽  
Vol 86 (20) ◽  
Author(s):  
Clara Kampik ◽  
Yann Denis ◽  
Sandrine Pagès ◽  
Stéphanie Perret ◽  
Chantal Tardif ◽  
...  

ABSTRACT Cellulolytic microorganisms play a key role in the global carbon cycle by decomposing structurally diverse plant biopolymers from dead plant matter. These microorganisms, in particular anaerobes such as Ruminiclostridium cellulolyticum that are capable of degrading and catabolizing several different polysaccharides, require a fine-tuned regulation of the biosynthesis of their polysaccharide-degrading enzymes. In this study, we present a bacterial regulatory system involved in the regulation of genes enabling the metabolism of the ubiquitous plant polysaccharide xyloglucan. The characterization of R. cellulolyticum knockout mutants suggests that the response regulator XygR and its cognate histidine kinase XygS are essential for growth on xyloglucan. Using in vitro and in vivo analyses, we show that XygR binds to the intergenic region and activates the expression of two polycistronic transcriptional units encoding an ABC transporter dedicated to the uptake of xyloglucan oligosaccharides and the two-component system itself together with three intracellular glycoside hydrolases responsible for the sequential intracellular degradation of the imported oligosaccharides into mono- and disaccharides. Interestingly, XygR also upregulates the expression of a distant gene coding for the most active extracellular cellulosomal xyloglucanase of R. cellulolyticum by binding to the upstream intergenic region. IMPORTANCE Ruminiclostridium cellulolyticum is a Gram-positive, mesophilic, anaerobic, cellulolytic, and hemicellulolytic bacterium. The last property qualifies this species as a model species for the study of hemicellulose degradation, import of degradation products, and overall regulation of these phenomena. In this study, we focus on the regulation of xyloglucan dextrin import and intracellular degradation and show that the two components of the two-component regulation system XygSR are essential for growth on xyloglucan and that the response regulator XygR regulates the transcription of genes involved in the extracellular degradation of the polysaccharide, the import of degradation products, and their intracellular degradation.


2009 ◽  
Vol 191 (23) ◽  
pp. 7174-7181 ◽  
Author(s):  
Eunna Choi ◽  
Eduardo A. Groisman ◽  
Dongwoo Shin

ABSTRACT The PhoP/PhoQ two-component system controls several physiological and virulence functions in Salmonella enterica. This system is activated by low Mg2+, acidic pH, and antimicrobial peptides, but the biological consequences resulting from sensing multiple signals are presently unclear. Here, we report that the PhoP/PhoQ system regulates different Salmonella genes depending on whether the inducing signal is acidic pH or low Mg2+. When Salmonella experiences acidic pH, the PhoP/PhoQ system promotes Fe2+ uptake in a process that requires the response regulator RstA, activating transcription of the Fe2+ transporter gene feoB. In contrast, the PhoP-induced RstA protein did not promote feoB expression at neutral pH with low Mg2+. The PhoP/PhoQ system promotes the expression of the Mg2+ transporter mgtA gene only when activated in bacteria starved for Mg2+. This is because mgtA transcription promoted at high Mg2+ concentrations by the acidic-pH-activated PhoP protein failed to reach the mgtA coding region due to the mgtA leader region functioning as a Mg2+ sensor. Our results show that a single two-component regulatory system can regulate distinct sets of genes in response to different input signals.


Microbiology ◽  
2004 ◽  
Vol 150 (4) ◽  
pp. 865-875 ◽  
Author(s):  
Deepak Kumar Saini ◽  
Vandana Malhotra ◽  
Deepanwita Dey ◽  
Neha Pant ◽  
Taposh K. Das ◽  
...  

Two-component systems play a central role in the adaptation of pathogenic bacteria to the environment prevailing within host tissues. The genes encoding the response regulator DevR (Rv3133c/DosR) and the cytoplasmic portion (DevS201) of the histidine kinase DevS (Rv3132c/DosS), a putative two-component system of Mycobacterium tuberculosis, were cloned and the protein products were overexpressed, purified and refolded as N-terminally His6-tagged proteins from Escherichia coli. DevS201 underwent autophosphorylation and participated in rapid phosphotransfer to DevR in a Mg2+-dependent manner. Chemical stability analysis and site-directed mutagenesis implicated the highly conserved residues His395 and Asp54 as the sites of phosphorylation in DevS and DevR, respectively. Mutations in Asp8 and Asp9 residues, postulated to form the acidic Mg2+-binding pocket, and the invariant Lys104 of DevR, abrogated phosphoryl transfer from DevS201 to DevR. DevR–DevS was thus established as a typical two-component regulatory system based on His-to-Asp phosphoryl transfer. Expression of the Rv3134c–devR–devS operon was induced at the RNA level in hypoxic cultures of M. tuberculosis H37Rv and was associated with an increase in the level of DevR protein. However, in a devR mutant strain expressing the N-terminal domain of DevR, induction was observed at the level of RNA expression but not at that of protein. DevS was translated independently of DevR and induction of devS transcripts was not associated with an increase in protein level in either wild-type or mutant strains, reflecting differential regulation of this locus during hypoxia.


2012 ◽  
Vol 393 (10) ◽  
pp. 1165-1171 ◽  
Author(s):  
Alexandre G. Blanco ◽  
Albert Canals ◽  
Miquel Coll

Abstract The PhoR-PhoB phosphorelay is a bacterial two-component system that activates the transcription of several genes involved in phosphate uptake and assimilation. The response begins with the autophosphorylation of the sensor kinase PhoR, which activates the response regulator PhoB. Upon binding to the pho box DNA sequence, PhoB recruits the RNA polymerase and thereby activates the transcription of specific genes. To unveil hitherto unknown molecular mechanisms along the activation pathway, we report biochemical data characterizing the PhoB binding to promoters containing multiple pho boxes and describe the crystal structure of two PhoB DNA-binding domains bound in tandem to a 26-mer DNA.


2021 ◽  
Author(s):  
Nicholas W Haas ◽  
Abhiney Jain ◽  
Zachary Hying ◽  
Sabrina J Arif ◽  
Jeffrey A Gralnick ◽  
...  

Purple nonsulfur bacteria (PNSB) are metabolically versatile organisms generate energy through both aerobic and anaerobic respiration as well as anoxygenic photosynthesis. In many PNSB, the redox-sensing, two-component system RegBA is a global regulator of energy generating and consuming pathways, such as photosynthesis, carbon fixation, and nitrogen fixation, when cells are shifted from an aerobic to an anaerobic environment. However, in the PNSB Rhodopseudomonas palustris, the role of the RegBA homolog, RegSR, was unclear since global regulation of these same pathways involves the oxygen-sensing signal transduction system, FixJL-K, in R. palustris. Using RNA-seq analysis, we found that RegSR plays a role in regulating the operon pioABC, which encodes genes required for Fe(II) oxidation. We found that transcript levels of pioABC under photoheterotrophic conditions was dependent on the oxidation state of the carbon substrate and whether the cells were fixing nitrogen. We also found that R. palustris can carry out photolithoheterotrophic growth using Fe(II) oxidation when grown with the oxidized carbon substrate, malate, requiring regSR and pioABC. We present a model in which RegSR regulates pioABC in response to a cellular redox signal, allowing R. palustris to use Fe(II) oxidation to access more electrons when there is an increased cellular demand for reducing equivalents.


2021 ◽  
Author(s):  
Francesca Ermoli ◽  
Giulia Vitali ◽  
Cinzia Calvio

The two-component system DegS/U of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Since the consensus sequence recognized by the response regulator DegU has not been clearly defined yet, mutations in either component have been crucial in the identification of the cellular targets of this regulatory system. Over the years, the degU32Hy mutant allele, that was supposed to mimic the activated regulator, has been commonly used to define the impact of this TCS on its regulated genes in domestic strains. SwrA encodes a small protein essential for swarming motility and for poly-γ-glutamate biosynthesis and is only present in wild strains. Previous work indicated that SwrA is partnering with DegU~P in exerting its role on both phenotypes. In this work, inserting a degS200Hy mutation in swrA+ and swrA- isogenic strains we demonstrate that SwrA modulates the action of DegU~P on two new phenotypes, subtilisin expression and competence for DNA uptake, with a remarkable effect on transformation. These effects cannot not be appreciated with the DegU32Hy mutant as it does not mirror the wild-type DegU protein in its ability to interact with SwrA.


2013 ◽  
Vol 80 (1) ◽  
pp. 306-319 ◽  
Author(s):  
Elias Dahlsten ◽  
Zhen Zhang ◽  
Panu Somervuo ◽  
Nigel P. Minton ◽  
Miia Lindström ◽  
...  

ABSTRACTThe two-component system CBO0366/CBO0365 was recently demonstrated to have a role in cold tolerance of group IClostridium botulinumATCC 3502. The mechanisms under its control, ultimately resulting in increased sensitivity to low temperature, are unknown. A transcriptomic analysis with DNA microarrays was performed to identify the differences in global gene expression patterns of the wild-type ATCC 3502 and a derivative mutant with insertionally inactivatedcbo0365at 37 and 15°C. Altogether, 150 or 141 chromosomal coding sequences (CDSs) were found to be differently expressed in thecbo0365mutant at 37 or 15°C, respectively, and thus considered to be under the direct or indirect transcriptional control of the response regulator CBO0365. Of the differentially expressed CDSs, expression of 141 CDSs was similarly affected at both temperatures investigated, suggesting that the putative CBO0365 regulon was practically not affected by temperature. The regulon involved genes related to acetone-butanol-ethanol (ABE) fermentation, motility, arsenic resistance, and phosphate uptake and transport. Deteriorated growth at 17°C was observed for mutants with disrupted ABE fermentation pathway components (crt,bcd,bdh, andctfA), arsenic detoxifying machinery components (arsCandarsR), or phosphate uptake mechanism components (phoT), suggesting roles for these mechanisms in cold tolerance of group IC. botulinum. Electrophoretic mobility shift assays showed recombinant CBO0365 to bind to the promoter regions ofcrt,arsR, andphoT, as well as to the promoter region of its own operon, suggesting direct DNA-binding transcriptional activation or repression as a means for CBO0365 in regulating these operons. The results provide insight to the mechanisms group IC. botulinumutilizes in coping with cold.


Sign in / Sign up

Export Citation Format

Share Document