The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study

1996 ◽  
Vol 199 (2) ◽  
pp. 427-433
Author(s):  
U Hentschel ◽  
S Hand ◽  
H Felbeck

Heat production and nitrate respiration rates were measured simultaneously in the gill tissue of Lucinoma aequizonata. This marine bivalve contains chemoautotrophic, intracellular, bacterial symbionts in its gill tissue. The symbionts show constitutive anaerobic respiration, using nitrate instead of oxygen as a terminal electron acceptor. An immediate increase in heat production was observed after the addition of nitrate to the perfusion medium of the calorimeter and this was accompanied by the appearance of nitrite in the effluent sea water. The nitrate-stimulated heat output was similar under aerobic and anaerobic conditions, which is consistent with the constitutive nature of nitrate respiration. The amount of heat released was dependent on the concentration of nitrate in the perfusion medium. At nitrate concentrations between 0.5 and 5 mmol l-1, the total heat production was increased over twofold relative to unstimulated baseline values. A mean (±s.e.m.) experimental enthalpy of -130±22.6 kJ mol-1 nitrite (N=13) was measured for this concentration range.

1989 ◽  
Vol 142 (1) ◽  
pp. 293-310
Author(s):  
S. H. Wright ◽  
D. A. Moon ◽  
A. L. Silva

The accumulation of amino acids from sea water into the integumental epithelium of the bivalve gill can occur against chemical gradients in excess of 10(6) to 1. The energy to drive this transport has been proposed to come from the inwardly directed Na+ electrochemical gradient. The present study examined the influence of intracellular and extracellular [Na+] on influx and efflux of amino acids in gill tissue from the mussel, Mytilus californianus. Influx of alanine was inhibited by more than 90% when external [Na+] was reduced from 425 to 2 mmol l-1, and by 85% when intracellular [Na+] was increased from approximately 11 to approximately 100 mmol l-1 (by means of a 30-min exposure to the ionophore, nigericin). Efflux of taurine and alanine from gill tissue into normal-Na+ sea water was very low (less than 5% of the Jmax of the carrier-mediated influx pathways). Reducing the external Na+ from 425 to 2 mmol l-1 increased taurine efflux by only 20%. Raising cell [Na+] to approximately 100 mmol l-1 increased taurine efflux 2.7-fold; further increases in cell [Na+] increased taurine efflux another 7.5-fold. These data, in conjunction with results from earlier studies, suggest that activation of integumental amino acid transporters requires an interaction of multiple sodium ions with binding sites of low affinity for this ion. This set of characteristics results in transport systems that are well-adapted for the net accumulation of amino acids from sea water.


1980 ◽  
Vol 84 (1) ◽  
pp. 169-185
Author(s):  
W. Freas ◽  
S. Grollman

1. Prostaglandin E2 (PGE2) was identified in Modiolus demissus gill tissue on the basis of solvent extraction, thin layer and column chromatography, bioassay, and radioimmunoassay. The presence of PGE2 was detected in both tissue and sea water incubate surrounding the tissue. 2. Both hyposmotic stress and magnesium-free sea water significantly increased release of prostaglandins into sea water. Hyposmotic stress also significantly increased prostaglandin synthesis. 3. Examination of tissues revealed that homogenates of the mantle and lower visceral mass contained significantly fewer nanograms immunoreactive prostaglandins per gram wet weight than homogenates of the gill, posterior adductor muscle, upper visceral mass, or siphon tissue. 4. Prostaglandin release could be increased by addition of arachidonic acid, and inhibited by addition of acetylsalicylic acid or indomethacin.


1982 ◽  
Vol 202 (3) ◽  
pp. 661-665 ◽  
Author(s):  
D G Clark ◽  
M Brinkman ◽  
O H Filsell ◽  
S J Lewis ◽  
M N Berry

(Na+ + K+)-dependent ATPase activity, heat production and oxygen consumption were increased by 59%, 62% and 75% respectively in hepatocytes from tri-iodothyronine-treated rats. Ouabain at concentrations of 1 and 10 mM decreased oxygen uptake by 2-8% in hepatocytes from euthyroid rats and by 5-15% in hepatocytes from hyperthyroid animals. Heat output was decreased by 4-9% with the glycoside in isolated liver parenchymal cells from the control animals and by 11% in the cells from the tri-iodothyronine-treated animals. These results do not support the hypothesis that hepatic (Na+ + K+)-ATPase plays a major role in increased heat production in hepatocytes from hyperthyroid rats.


1986 ◽  
Vol 235 (2) ◽  
pp. 337-342 ◽  
Author(s):  
D G Clark ◽  
M Brinkman ◽  
S D Neville

The effects of the sequential addition of glucose, noradrenaline, propranolol and oleic acid on the rates of O2 consumption and heat production by isolated interscapular brown adipocytes from control and cafeteria-fed rats were compared. Although the chemical agents produced very similar changes in oxidative metabolism, the actual rates of O2 uptake and heat output in adipocytes from the cafeteria-fed rats, when expressed per g dry wt. of cells, were approx. 65% less than those obtained with cells from the control rats. However, when the same results were expressed per 10(8) multiloccular brown adipocytes, rather than gravimetrically, rates of O2 consumption and heat production were equivalent. Further interpretation of these data is complicated, because the average volume of multiloccular brown adipocytes from cafeteria-fed rats was 2.5 times that for multiloccular cells from control animals.


2015 ◽  
Vol 81 (24) ◽  
pp. 8478-8488 ◽  
Author(s):  
Lee R. Terry ◽  
Thomas R. Kulp ◽  
Heather Wiatrowski ◽  
Laurence G. Miller ◽  
Ronald S. Oremland

ABSTRACTBacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to theComamonadaceaefamily and were 99% similar to previously described species. We identify these novel strains asHydrogenophagataeniospiralisstrain IDSBO-1 andVariovorax paradoxusstrain IDSBO-4. Both strains possess a gene with homology to theaioAgene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression ofaioAis not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by theaioAgenes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularlyAcidovoraxsp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.


2007 ◽  
Vol 73 (11) ◽  
pp. 3519-3527 ◽  
Author(s):  
Priya Narasingarao ◽  
Max M. Häggblom

ABSTRACT The diversity population of microorganisms with the capability to use selenate as a terminal electron acceptor, reducing it to selenite and elemental selenium by the process known as dissimilatory selenate reduction, is largely unknown. The overall objective of this study was to gain an in-depth understanding of anaerobic biotransformation of selenium in the environment, particularly anaerobic respiration, and to characterize the microorganisms catalyzing this process. Here, we demonstrate the isolation and characterization of four novel anaerobic dissimilatory selenate-respiring bacteria enriched from a variety of sources, including sediments from three different water bodies in Chennai, India, and a tidal estuary in New Jersey. Strains S5 and S7 from India, strain KM from the Meadowlands, NJ, and strain pn1, categorized as a laboratory contaminant, were all phylogenetically distinct, belonging to various phyla in the bacterial domain. The 16S rRNA gene sequence shows that strain S5 constitutes a new genus belonging to Chrysiogenetes, while strain S7 belongs to the Deferribacteres, with greater than 98% 16S rRNA gene similarity to Geovibrio ferrireducens. Strain KM is related to Malonomonas rubra, Pelobacter acidigallici, and Desulfuromusa spp., with 96 to 97% 16S rRNA gene similarity. Strain pn1 is 99% similar to Pseudomonas stutzeri. Strains S5, S7, and KM are obligately anaerobic selenate-respiring microorganisms, while strain pn1 is facultatively anaerobic. Besides respiring selenate, all these strains also respire nitrate.


1998 ◽  
Vol 180 (22) ◽  
pp. 5989-5996 ◽  
Author(s):  
Elena Maklashina ◽  
Deborah A. Berthold ◽  
Gary Cecchini

ABSTRACT Succinate-ubiquinone oxidoreductase (SQR) from Escherichia coli is expressed maximally during aerobic growth, when it catalyzes the oxidation of succinate to fumarate in the tricarboxylic acid cycle and reduces ubiquinone in the membrane. The enzyme is similar in structure and function to fumarate reductase (menaquinol-fumarate oxidoreductase [QFR]), which participates in anaerobic respiration by E. coli. Fumarate reductase, which is proficient in succinate oxidation, is able to functionally replace SQR in aerobic respiration when conditions are used to allow the expression of the frdABCD operon aerobically. SQR has not previously been shown to be capable of supporting anaerobic growth ofE. coli because expression of the enzyme complex is largely repressed by anaerobic conditions. In order to obtain expression of SQR anaerobically, plasmids which utilize the PFRD promoter of the frdABCD operon fused to the sdhCDAB genes to drive expression were constructed. It was found that, under anaerobic growth conditions where fumarate is utilized as the terminal electron acceptor, SQR would function to support anaerobic growth ofE. coli. The levels of amplification of SQR and QFR were similar under anaerobic growth conditions. The catalytic properties of SQR isolated from anaerobically grown cells were measured and found to be identical to those of enzyme produced aerobically. The anaerobic expression of SQR gave a greater yield of enzyme complex than was found in the membrane from aerobically grown cells under the conditions tested. In addition, it was found that anaerobic expression of SQR could saturate the capacity of the membrane for incorporation of enzyme complex. As has been seen with the amplified QFR complex, E. coli accommodates the excess SQR produced by increasing the amount of membrane. The excess membrane was found in tubular structures that could be seen in thin-section electron micrographs.


1998 ◽  
Vol 180 (20) ◽  
pp. 5344-5350 ◽  
Author(s):  
Michiko M. Nakano ◽  
Tamara Hoffmann ◽  
Yi Zhu ◽  
Dieter Jahn

ABSTRACT The nitrate and nitrite reductases of Bacillus subtilishave two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded bynarGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC(encoding assimilatory nitrate reductase) and nasF(required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC andnasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation,nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEFrequired the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration.


1992 ◽  
Vol 262 (1) ◽  
pp. H200-H208 ◽  
Author(s):  
S. M. Holroyd ◽  
C. L. Gibbs

It has been suggested that there is a shortening-heat component that is an extra liberation of heat on shortening above that due to the external work, which contributes to the total energy expenditure of the beating heart. The presence of a shortening heat component was studied in isolated papillary muscles from the right ventricle of rabbits killed by cervical dislocation. At the onset of a contraction, muscles were shortened from various initial lengths through fixed distances at near maximum velocity before being allowed to develop force at the new length; the heat production accompanying such contractions was measured. The measured heat was compared with heat values predicted from previously established heat-stress curves obtained by using either preshortening or latency release methods. There was no shortening-related increment in heat output per contraction when comparison was made to a control heat-stress curve, obtained using the latency release method. An increase in heat production of 10% was observed with long shortening distances when comparison was made to a control heat-stress curve obtained by preshortening the muscles; however, this difference is most likely due to an underestimate of the magnitude of the activation heat component in these control heat-stress curves. An increase in isometric heat production due to maintained stretch per se was observed. The present data indicate that it is unlikely that there is a significant shortening heat component when cardiac muscle shortens. The absence of such a metabolic component may account for the rapid fall off in total enthalpy output in isotonic contractions at low to medium afterloads when compared with the skeletal muscle data.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Jacob E. Choby ◽  
Eric P. Skaar

ABSTRACTThe virulence of the human pathogenStaphylococcus aureusis supported by many heme-dependent proteins, including key enzymes of cellular respiration. Therefore, synthesis of heme is a critical component of staphylococcal physiology.S. aureusgenerates heme via the coproporphyrin-dependent pathway, conserved across members of theFirmicutesandActinobacteria. In this work, we genetically investigate the oxidation of coproporphyrinogen to coproporphyrin in this heme synthesis pathway. The coproporphyrinogen III oxidase CgoX has previously been identified as the oxygen-dependent enzyme responsible for this conversion under aerobic conditions. However, becauseS. aureususes heme during anaerobic nitrate respiration, we hypothesized that coproporphyrin production is able to proceed in the absence of oxygen. Therefore, we tested the contribution to anaerobic heme synthesis of CgoX and two other proteins previously identified as potential oxygen-independent coproporphyrinogen dehydrogenases, NWMN_1486 and NWMN_1636. We have found that CgoX alone is responsible for aerobic and anaerobic coproporphyrin synthesis from coproporphyrinogen and is required for aerobic and anaerobic heme-dependent growth. This work provides an explanation for howS. aureusheme synthesis proceeds under both aerobic and anaerobic conditions.IMPORTANCEHeme is a critical molecule required for aerobic and anaerobic respiration by organisms across kingdoms. The human pathogenStaphylococcus aureushas served as a model organism for the study of heme synthesis and heme-dependent physiology and, like many species of the phylaFirmicutesandActinobacteria, generates heme through a coproporphyrin intermediate. A critical step in terminal heme synthesis is the production of coproporphyrin by the CgoX enzyme, which was presumed to be oxygen dependent. However,S. aureusalso requires heme during anaerobic growth; therefore, the synthesis of coproporphyrin by an oxygen-independent mechanism is required. Here, we identify CgoX as the enzyme performing the oxygen-dependent and -independent synthesis of coproporphyrin from coproporphyrinogen, resolving a key outstanding question in the coproporphyrin-dependent heme synthesis pathway.


Sign in / Sign up

Export Citation Format

Share Document