Application of Phenotype Microarray for Profiling Carbon Sources Utilization between Biofilm and Non-Biofilm of Pseudomonas aeruginosa from Clinical Isolates

2020 ◽  
Vol 21 (14) ◽  
pp. 1539-1550
Author(s):  
Nur S. Ismail ◽  
Suresh K. Subbiah ◽  
Niazlin M. Taib

Background: This is the fastest work in obtaining the metabolic profiles of Pseudomonas aeruginosa in order to combat the infection diseases which leads to high morbidity and mortality rates. Pseudomonas aeruginosa is a high versatility of gram-negative bacteria that can undergo aerobic and anaerobic respiration. Capabilities in deploying different carbon sources, energy metabolism and regulatory system, ensure the survival of this microorganism in the diverse environment condition. Determination of differences in carbon sources utilization among biofilm and non-biofilm of Pseudomonas aeruginosa provides a platform in understanding the metabolic activity of the microorganism. Methods: The study was carried out from September 2017 to February 2019. Four archive isolates forming strong and intermediate biofilm and non-biofilms producer were subcultured from archive isolates. ATCC 27853 P. aeruginosa was used as a negative control or non-biofilm producing microorganism. Biofilm formation was confirmed by Crystal Violet Assay (CVA) and Congo Red Agar (CRA). Metabolic profiles of the biofilm and non-biofilms isolates were determined by phenotype microarrays (Biolog Omnilog). Results and Discussion: In this study, Pseudomonas aeruginosa biofilm isolates utilized uridine, L-threonine and L-serine while non-biofilm utilized adenosine, inosine, monomethyl, sorbic acid and succinamic acid. Conclusion: The outcome of this result will be used for future studies to improve detection or inhibit the growth of P. aeruginosa biofilm and non-biofilm respectively.

2020 ◽  
Vol 2 (1) ◽  
pp. 31-38
Author(s):  
Fajrin Noviyanto ◽  
Siti Hodijah ◽  
Yusransyah Yusransyah

The bacteria that cause infections that can lead to high morbidity and mortality, the bacterium Pseudomonas aeruginosa. Bangle has a pharmacological activity as antibacterial, laxative, pancreatic lipase inhibitor, and protect cells from damage caused by oxidative stress. The purpose of this study are: to know the chemical constituents present in the extract of leaves bangle (Zingiber purpureum Roxb.) Can be efficacious as an antibacterial and knowing Minimal Inhibitory concentration (MIC) of the extracts of leaves bangle against Pseudomonas aeruginosa. Tests on the leaf extracts for antibacterial activity against Pseudomonas aeruginosa bangle made by the method of Kirby Bauer and solvents used are DMSO. Test solution with a concentration of leaf extract bangle 200, 400, 600, 800 and 1,000 ppm, the positive control solution (ciprofoxacin) and the solution negative control (DMSO). The results showed that the chemical constituents present in the extract of leaves bangle (Zingiber purpureum Roxb.) Are flavonoids, saponins, tannins, alkaloids and steroids. Value Minimum Inhibitory Concentration (MIC) of ethanol extract of the leaf bangle S bacteria Pseudomonas aeruginosa is a concentration of 40 % with an average diameter of 5.44 mm inhibitory. MIC extract ethanol extract of leaf bangle belonging to the bacterial activity that is strong enough..


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Nicole Gliese ◽  
Viola Khodaverdi ◽  
Max Schobert ◽  
Helmut Görisch

The response regulator AgmR was identified to be involved in the regulation of the quinoprotein ethanol oxidation system of Pseudomonas aeruginosa ATCC 17933. Interruption of the agmR gene by insertion of a kanamycin-resistance cassette resulted in mutant NG3, unable to grow on ethanol. After complementation with the intact agmR gene, growth on ethanol was restored. Transcriptional lacZ fusions were used to identify four operons which are regulated by the AgmR protein: the exaA operon encodes the pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the exaBC operon encodes a soluble cytochrome c 550 and an aldehyde dehydrogenase, the pqqABCDE operon carries the PQQ biosynthetic genes, and operon exaDE encodes a two-component regulatory system which controls transcription of the exaA operon. Transcription of exaA was restored by transformation of NG3 with a pUCP20T derivative carrying the exaDE genes under lac-promoter control. These data indicate that the AgmR response regulator and the exaDE two-component regulatory system are organized in a hierarchical manner. Gene PA1977, which appears to form an operon with the agmR gene, was found to be non-essential for growth on ethanol.


2014 ◽  
Vol 197 (5) ◽  
pp. 861-871 ◽  
Author(s):  
Kumiko Kurabayashi ◽  
Yuko Hirakawa ◽  
Koichi Tanimoto ◽  
Haruyoshi Tomita ◽  
Hidetada Hirakawa

Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagicEscherichia coli(EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression oftorR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression ofglpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.


2016 ◽  
Vol 14 (03) ◽  
pp. 1650007 ◽  
Author(s):  
Matthias Gerstgrasser ◽  
Sarah Nicholls ◽  
Michael Stout ◽  
Katherine Smart ◽  
Chris Powell ◽  
...  

Biolog phenotype microarrays (PMs) enable simultaneous, high throughput analysis of cell cultures in different environments. The output is high-density time-course data showing redox curves (approximating growth) for each experimental condition. The software provided with the Omnilog incubator/reader summarizes each time-course as a single datum, so most of the information is not used. However, the time courses can be extremely varied and often contain detailed qualitative (shape of curve) and quantitative (values of parameters) information. We present a novel, Bayesian approach to estimating parameters from Phenotype Microarray data, fitting growth models using Markov Chain Monte Carlo (MCMC) methods to enable high throughput estimation of important information, including length of lag phase, maximal “growth” rate and maximum output. We find that the Baranyi model for microbial growth is useful for fitting Biolog data. Moreover, we introduce a new growth model that allows for diauxic growth with a lag phase, which is particularly useful where Phenotype Microarrays have been applied to cells grown in complex mixtures of substrates, for example in industrial or biotechnological applications, such as worts in brewing. Our approach provides more useful information from Biolog data than existing, competing methods, and allows for valuable comparisons between data series and across different models.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Paolo Emidio Costantini ◽  
Andrea Firrincieli ◽  
Stefano Fedi ◽  
Carola Parolin ◽  
Carlo Viti ◽  
...  

The vaginal microbiota, normally characterized by lactobacilli presence, is crucial for vaginal health. Members belonging to L. crispatus and L. gasseri species exert crucial protective functions against pathogens, although a total comprehension of factors that influence their dominance in healthy women is still lacking. Here we investigated the complete genome sequence and comprehensive phenotypic profile of L. crispatus strain BC5 and L. gasseri strain BC12, two vaginal strains featured by anti-bacterial and anti-viral activities. Phenotype microarray (PM) results revealed an improved capacity of BC5 to utilize different carbon sources as compared to BC12, although some specific carbon sources that can be associated to the human diet were only metabolized by BC12, i.e. uridine, amygdalin, tagatose. Additionally, the two strains were mostly distinct in the capacity to utilize the nitrogen sources under analysis. On the other hand, BC12 showed tolerance/resistance towards twice the number of stressors (i.e. antibiotics, toxic metals etc.) with respect to BC5. The divergent phenotypes observed in PM were supported by the identification in either BC5 or BC12 of specific genetic determinants that were found to be part of the core genome of each species. The PM results in combination with comparative genome data provide insights into the possible environmental factors and genetic traits supporting the predominance of either L. crispatus BC5 or L. gasseri BC12 in the vaginal niche, giving also indications for metabolic predictions at the species level.


2020 ◽  
Vol 148 (3-4) ◽  
pp. 196-202
Author(s):  
Snjezana Petrovic ◽  
Jasmina Basic ◽  
Zoran Mandinic ◽  
Dragana Bozic ◽  
Marina Milenkovic ◽  
...  

Introduction/Objective. Biofilm and pyocyanin production are essential components of Pseudomonas aeruginosa virulence and antibiotic resistance. Our objective was to examine inhibitory effect of synthetized propafenone derivatives 3-(2-Fluorophenyl)- 1-(2- (2-hydroxy-3-propylamino-propoxy)-phenyl)-propan-1-one hydrochloride (5OF) and3-(2- Trifluoromethyl-phenyl)-1-(2-(2-hydroxy-3-propylamino-propoxy)-phenyl)-propan-1-one hydrochloride (5CF3) on biofilm and pyocyanin in Pseudomonas aeruginosa clinical strains. Methods. Effects were tested on nine clinical isolates and one control laboratory strain of P. aeruginosa. In vitro analysis of biofilm growing was performed by incubating bacteria (0.5 McFarland) with 5OF and 5CF3 (500?31.2 ?g/ml) and measuring optical density (OD) at 570 nm. Bacteria in medium without compounds were positive control. Blank medium (an uninoculated medium without test compounds) was used as negative control. Pyocyanin production was estimated by OD at 520 nm, after bacteria incubated with 5CF3 and 5OF (250 and 500 ?g/ml), treated with chloroform, and chloroform layer mixed with HCl. Results. A total of 500 ?g/ml of 5OF and 5CF3 completely inhibited biofilm formation in 10/10 and 4/10 strains, respectively. A total of 250 ?g/ml of 5OF and 5CF3 strongly inhibited biofilm formation in 7/10 strains, while inhibition with 125 ?g/ml of 5OF and 5CF3 was moderate. Lower concentrations had almost no effect on biofilm production. Pyocyanin production was reduced to less than 40% of the control value in 6/9, and less than 50% of the control in 7/9 strains with 500 ?g/ml of 5OF and 5CF3, respectively. At 250 ?g/ml 5OF and 5CF3, most strains had pyocyanin production above 50% of the control value. Conclusion. Synthetized propafenone derivatives, 5OF and 5CF3, inhibited biofilms and pyocyanin production of Pseudomonas aeruginosa clinical strains. Presented results suggest that propafenone derivatives are potential lead-compounds for synthesis of novel antipseudomonal drugs.


PLoS ONE ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. e16105 ◽  
Author(s):  
Mi Young Yoon ◽  
Kang-Mu Lee ◽  
Yongjin Park ◽  
Sang Sun Yoon

2007 ◽  
Vol 189 (11) ◽  
pp. 4310-4314 ◽  
Author(s):  
Kerstin Schreiber ◽  
Robert Krieger ◽  
Beatrice Benkert ◽  
Martin Eschbach ◽  
Hiroyuki Arai ◽  
...  

ABSTRACT In Pseudomonas aeruginosa, the narK 1 K 2 GHJI operon encodes two nitrate/nitrite transporters and the dissimilatory nitrate reductase. The narK 1 promoter is anaerobically induced in the presence of nitrate by the dual activity of the oxygen regulator Anr and the N-oxide regulator Dnr in cooperation with the nitrate-responsive two-component regulatory system NarXL. The DNA bending protein IHF is essential for this process. Similarly, narXL gene transcription is enhanced under anaerobic conditions by Anr and Dnr. Furthermore, Anr and NarXL induce expression of the N-oxide regulator gene dnr. Finally, NarXL in cooperation with Dnr is required for anaerobic nitrite reductase regulatory gene nirQ transcription. A cascade regulatory model for the fine-tuned genetic response of P. aeruginosa to anaerobic growth conditions in the presence of nitrate was deduced.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2003-2012 ◽  
Author(s):  
Verena Seidl ◽  
Irina S. Druzhinina ◽  
Christian P. Kubicek

To identify carbon sources that trigger β-N-acetylglucosaminidase (NAGase) formation in Hypocrea atroviridis (anamorph Trichoderma atroviride), a screening system was designed that consists of a combination of Biolog Phenotype MicroArray plates, which contain 95 different carbon sources, and specific enzyme activity measurements using a chromogenic substrate. The results revealed growth-dependent kinetics of NAGase formation and it was shown that NAGase activities were enhanced on carbon sources sharing certain structural properties, especially on α-glucans (e.g. glycogen, dextrin and maltotriose) and oligosaccharides containing galactose. Enzyme activities were assessed in the wild-type and a H. atroviridis Δnag1 strain to investigate the influence of the two NAGases, Nag1 and Nag2, on total NAGase activity. Reduction of NAGase levels in the Δnag1 strain in comparison to the wild-type was strongly carbon-source and growth-phase dependent, indicating the distinct physiological roles of the two proteins. The transcript abundance of nag1 and nag2 was increased on carbon sources with elevated NAGase activity, indicating transcriptional regulation of these genes. The screening method for the identification of carbon sources that induce enzymes or a gene of interest, as presented in this paper, can be adapted for other purposes if appropriate enzyme or reporter assays are available.


Sign in / Sign up

Export Citation Format

Share Document