biological cost
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Andrew S. Bray ◽  
Richard D. Smith ◽  
Andrew W. Hudson ◽  
Giovanna E. Hernandez ◽  
Taylor M. Young ◽  
...  

AbstractDue to its high transmissibility, Klebsiella pneumoniae (Kpn) is one of the leading causes of nosocomial infections. Here, we studied the biological cost of colistin resistance, an antibiotic of last resort, of this opportunistic pathogen using a murine model of gut colonization and transmission. Colistin resistance in Kpn is commonly the result of inactivation of the small regulatory protein MgrB. Without a functional MgrB, the two-component system PhoPQ is constitutively active, leading to increased lipid A modifications and subsequent colistin resistance. Using an engineered MgrB mutant, we observed that MgrB-dependent colistin resistance is not associated with a fitness defect during in vitro growth conditions. However, colistin-resistant Kpn colonizes the murine gut poorly, which may be due to the decreased production of capsular polysaccharide by the mutant. The colistin-resistant mutant of Kpn had increased survival outside the host when compared to the parental colistin-sensitive strain. We attribute this enhanced survivability to dysregulation of the PhoPQ two-component system and accumulation of the master stress regulator RpoS. The enhanced survival of the colistin resistant strain may be a key factor in the observed rapid host-to-host transmission in our model. Together, our data demonstrate that colistin-resistant Kpn experiences a biological cost in gastrointestinal colonization. However, this cost is mitigated by enhanced survival outside the host, increasing the risk of transmission. Additionally, it underscores the importance of considering the entire life cycle of a pathogen to truly determine the biological cost associated with antibiotic resistance.ImportanceThe biological cost associated with colistin resistance in Klebsiella pneumoniae (Kpn) was examined using a murine model of Kpn gut colonization and fecal-oral transmission. A common mutation resulting in colistin resistance in Kpn is a loss-of-function mutation of the small regulatory protein MgrB that regulates the two-component system PhoPQ. Even though colistin resistance in Kpn comes with a fitness defect in gut colonization, it increases bacterial survival outside the host enabling it to more effectively transmit to a new host. The enhanced survival is dependent upon the accumulation of RpoS and dysregulation of the PhoPQ. Hence, our study expands our understanding of the underlying molecular mechanism contributing to the transmission of colistin-resistant Kpn.


2021 ◽  
Vol 15 (10) ◽  
pp. 3088-3091
Author(s):  
Norah Al- Ajaji ◽  
Ali Barakat ◽  
Pradeep Koppolu ◽  
Lingam Amara Swapna

It is a case report of a minimally invasive technique for diastema restoration with sectional veneer fabrication. It involves a technically demanding procedure and less time with minimal disruption and stress to soft tissue. The method presented in this case report depicts the closure of anterior spacing by an aesthetic sectional veneer. Successful restoration in present-day dentistry includes minimal biological cost, promising longevity and esthetic integration in addition to traditional criteria. However, several other factors influence patient acceptance, such as the uncomplicated technique, possible intraoral repair, reduced soft tissue trauma, and affordable financial cost. The clinical procedure of sectional veneers, presented in this case, introduces an additional treatment option to produce a minimal invasive diastema restoration in a single appointment, with a reduced number of clinical steps. Keywords: Midline Diastema, Maxillary Anterior Diastema, Minimal Invasion Techniques, Esthetical Management, Partial Veneers


PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001436
Author(s):  
Joao Barbosa ◽  
Diego Lozano-Soldevilla ◽  
Albert Compte

Persistently active neurons during mnemonic periods have been regarded as the mechanism underlying working memory maintenance. Alternatively, neuronal networks could instead store memories in fast synaptic changes, thus avoiding the biological cost of maintaining an active code through persistent neuronal firing. Such “activity-silent” codes have been proposed for specific conditions in which memories are maintained in a nonprioritized state, as for unattended but still relevant short-term memories. A hallmark of this “activity-silent” code is that these memories can be reactivated from silent, synaptic traces. Evidence for “activity-silent” working memory storage has come from human electroencephalography (EEG), in particular from the emergence of decodability (EEG reactivations) induced by visual impulses (termed pinging) during otherwise “silent” periods. Here, we reanalyze EEG data from such pinging studies. We find that the originally reported absence of memory decoding reflects weak statistical power, as decoding is possible based on more powered analyses or reanalysis using alpha power instead of raw voltage. This reveals that visual pinging EEG “reactivations” occur in the presence of an electrically active, not silent, code for unattended memories in these data. This crucial change in the evidence provided by this dataset prompts a reinterpretation of the mechanisms of EEG reactivations. We provide 2 possible explanations backed by computational models, and we discuss the relationship with TMS-induced EEG reactivations.


2021 ◽  
Vol 8 (10) ◽  
pp. 213
Author(s):  
Carla S. Soares ◽  
Isabel R. Dias ◽  
Maria A. Pires ◽  
Pedro P. Carvalho

Platelet-rich fibrin (PRF) is a recent platelet-based biomaterial, poised as an innovative regenerative strategy for the treatment of wounds from different etiologies. PRF is defined as a biodegradable scaffold containing elevated amounts of platelets and leukocytes having the capability to release high concentrations of bioactive structural proteins and acting as a temporal release healing hemoderivative. This study aimed to evaluate the performance of canine-origin PRF, obtained from blood of screened donors, as a regenerative biomaterial suitable for the treatment of critical wounds in felines. Four short-hair felines with naturally occurring wounds were enrolled in this study. Three of the wounds were considered infected. Each PRF treatment was the result of the grafting of newly produced PRFs at the recipient area. The PRF treatment was initially performed two to three times per week, followed by single weekly treatments. The study was finalized when complete wound closure was achieved. No topical antimicrobial/antiseptic treatment was applied. The present research demonstrated that xenogenic PRFs significantly induced healthy vascularized granulation tissue in lesions with soft tissue deficit, also prompting the epithelization at the injured site. No rejection, necrosis, or infection signs were recorded. Additionally, PRF-therapy was revealed to be a biological cost-effective treatment, accelerating the wound healing process.


2021 ◽  
Vol 13 (15) ◽  
pp. 2857
Author(s):  
Adam Yaney-Keller ◽  
Ricardo San Martin ◽  
Richard D. Reina

Surveying the breeding population of a given species can be difficult for many logistic reasons. Marine turtles are a challenging taxon for the study of reproductive ecology and breeding strategies, because turtles aggregate off-shore and males remain exclusively at sea. For successful management of sea turtle populations, determining operational sex ratios (OSRs) on a continuing basis is critical for determining long-term population viability, particularly in the context of changing hatchling sex ratios due to temperature-dependent sex determination in a warming climate. To understand how survey technique and stage of the breeding season might influence the ability to detect turtles and determine OSRs, we surveyed the presence and identified the sex of adult male and female green sea turtles (Chelonia mydas) using a boat and small commercial unoccupied/unmanned aerial vehicle (UAV), at the start (October) and peak (December) of a nesting season at an important breeding site at Heron Island, Great Barrier Reef, Australia. The ratio of males to females within the breeding ground detected by both survey methods changed from being male-biased in October to heavily female-biased in December, indicating that most males cease their reproductive effort and depart before the peak of the nesting season. Surveying with a UAV more than doubled the rate of turtles seen per minute of survey effort compared with surveying solely from the boat and allowed surveys to be conducted at times and/or places unsafe or inaccessible for boats. The sex of a slightly greater proportion of turtles seen could not be identified by observers using a UAV versus a boat, although more turtles were detected using the UAV. The departure of many males during the peak of the nesting season is likely due to an increasing biological cost of residency in the area because males encounter fewer receptive females as the season progresses and the limited foraging opportunity is insufficient to support the number of males present. Overall, we found that UAVs are an effective tool for studying important but difficult to observe aspects of sea turtle biology.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 175
Author(s):  
Giovanni Falisi ◽  
Carlo Di Paolo ◽  
Claudio Rastelli ◽  
Carlo Franceschini ◽  
Sofia Rastelli ◽  
...  

This study aimed to evaluate the effectiveness of using ultrashort implants in the rehabilitation of jaws of fragile patients. The aim of the study was to retrospectively evaluate the survival rate of full-arch prosthetic rehabilitation on ultrashort implants, length 4 mm, 4 mm in diameter in the premolar and canine area and 4.5 mm in diameter in the molar area, with the insertion torque of 60 Nw and immediate loading. Nineteen patients were evaluated for 3 years clinically and radiographically. The significant majority of the patients at the 3 year follow-up (T4) presented a stable and functional implant-supported prothesis, and the survival rate of the implants was 85%, with a loss of 16 implants on 114 implants. The combination of the innovative implant surfaces and the correct project of the prostheses, with the related implant connection, determined a different timing in the therapy, allowing to obtain an immediate loading, which is currently demanded by patients. This and recent reports on short and ultrashort implant usage in atrophic jaws offer a good solution in critical cases. In conclusion, within the limits of the study, the full-arch rehabilitation with immediate loading on ultrashort implants showed good results with few postoperative complications and related low biological cost.


Author(s):  
D. V. Tapalski ◽  
T. A. Petrovskaya ◽  
A. E. Kozlov

Introduction. The spread of resistance to carbapenems among gram-negative bacteria have led to an increase in the consumption of polymyxins and the emergence of certain strains resistant to them. Polymyxin resistance is mainly associated with mutations in chromosomal genes. The development of mutational resistance to antibiotics can lead to a decrease in the viability of bacteria, which is manifested by an increase in the duration of the cell cycle, a decrease in virulence and competitive fitness. The purpose of the study was to assess in vitro the intensity of the formation of colistin resistance in carbapenemresistant clinical isolates of gram-negative bacteria, the stability of the formed emerged resistance and its biological cost.Materials and methods. For 46 strains of Klebsiella pneumoniae, 77 strains of Pseudomonas aeruginosa and 42 strains of Acinetobacter baumannii, real time polymerase chain reaction (PCR) was used to detect the genes of carbapenemases, the minimum inhibitory concentrations (MIC) of meropenem and colistin were determined by broth microdilution method. The selection of resistant subpopulations on Muller–Hinton agar with the addition of 16 mg/l colistin was carried out. For colistin-resistant mutants and their isogenic sensitive strains, the kinetic parameters of growth in broth culture were determined. Incubation and result recording were performed on an Infinite M200 microplate reader for 18.5 hours at 35°C with measurement of light scatter in the wells every 15 minutes.Results. The production of carbapenemases MBL VIM in P. aeruginosa, MBL NDM, KPC and OXA-48 in K. pneumoniae, OXA-23 and OXA-40 in A. baumannii was observed. All strains were sensitive to colistin (MIC varied from 0.062 to 2 mg/l). The colony growth on a selective medium with16 mg/l colistin was observed for 97.8% of K. pneumoniae strains, 16.9% of P. aeruginosa strains, and 61.9% of A. baumannii strains. The mutational nature of colistin resistance was confirmed for 21.7% of K. pneumoniae strains. For colistin-resistant mutants of K. pneumoniae, a significant increase in the duration of the lag phase (Tlag) was observed: 225.6 ± 7.037 min in the wild-type susceptible strains and 245.5 ± 8.726 in resistant mutants, p = 0.037. The indicators of the doubling time of the number of microbial cells in the exponential growth phase (Tdoubling) and the area under the bacterial growth curve did not differ significantly.Conclusion. A high frequency of formation of colistin resistance in vitro in carbapenemase-producing strains of K. pneumoniae was observed. The absence of significant changes in the kinetics of microbial growth in resistant strains makes it possible to predict the further spread of mutational resistance to colistin, as well as its preservation in microbial populations of K. pneumoniae even in the case of limiting the use of this antibiotic. 


2020 ◽  
Vol 21 (19) ◽  
pp. 7012 ◽  
Author(s):  
Tullio Genova ◽  
Ilaria Roato ◽  
Massimo Carossa ◽  
Chiara Motta ◽  
Davide Cavagnetto ◽  
...  

Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developments of bone bioprinting and bioinks, focusing the attention on crucial aspects of bone bioprinting such as selecting cell sources and attaining a viable vascularization within the newly printed bone. The main bioprinters currently available on the market and their characteristics have been taken into consideration, as well.


2020 ◽  
Vol 223 (20) ◽  
pp. jeb229450
Author(s):  
Numair Masud ◽  
Amy Ellison ◽  
Edward C. Pope ◽  
Jo Cable

ABSTRACTA lack of environmental enrichment can be severely detrimental to animal welfare. For terrestrial species, including humans, barren environments are associated with reduced cognitive function and increased stress responses and pathology. Despite a clear link between increased stress and reduced immune function, uncertainty remains on how enrichment might influence susceptibility to disease. For aquatic vertebrates, we are only now beginning to assess enrichment needs. Enrichment deprivation in fish has been linked to increased stress responses, agonistic behaviour, physiological changes and reduced survival. Limited data exist, however, on the impact of enrichment on disease resistance in fish, despite infectious diseases being a major challenge for global aquaculture. Here, using a model vertebrate host–parasite system, we investigated the impact of enrichment deprivation on susceptibility to disease, behaviour and physiology. Fish in barren tanks showed significantly higher infection burdens compared with those in enriched enclosures and they also displayed increased intraspecific aggression behaviour. Infections caused hosts to have significantly increased standard metabolic rates compared with uninfected conspecifics, but this did not differ between enriched and barren tanks. This study highlights the universal physiological cost of parasite infection and the biological cost (increased susceptibility to infection and increased aggression) of depriving captive animals of environmental enrichment.


Sign in / Sign up

Export Citation Format

Share Document