On a Gradient-based Evolution Strategy for Parametric Illumination Correction

Author(s):  
Elsa Fernández ◽  
Manuel Graña ◽  
Jesús Ruiz-Cabello
2004 ◽  
Vol 40 (9) ◽  
pp. 531 ◽  
Author(s):  
E. Fernández ◽  
M. Graña ◽  
J. Ruiz Cabello

Author(s):  
Johannes Tobisch ◽  
Anita Aghaie ◽  
Georg T. Becker

Strong Physical Unclonable Functions (PUFs), as a promising security primitive, are supposed to be a lightweight alternative to classical cryptography for purposes such as device authentication. Most of the proposed candidates, however, have been plagued by modeling attacks breaking their security claims. The Interpose PUF (iPUF), which has been introduced at CHES 2019, was explicitly designed with state-of-the-art modeling attacks in mind and is supposed to be impossible to break by classical and reliability attacks. In this paper, we analyze its vulnerability to reliability attacks. Despite the increased difficulty, these attacks are still feasible, against the original authors’ claim. We explain how adding constraints to the modeling objective streamlines reliability attacks and allows us to model all individual components of an iPUF successfully. In order to build a practical attack, we give several novel contributions. First, we demonstrate that reliability attacks can be performed not only with covariance matrix adaptation evolution strategy (CMA-ES) but also with gradient-based optimization. Second, we show that the switch to gradient-based reliability attacks makes it possible to combine reliability attacks, weight constraints, and Logistic Regression (LR) into a single optimization objective. This framework makes modeling attacks more efficient, as it exploits knowledge of responses and reliability information at the same time. Third, we show that a differentiable model of the iPUF exists and how it can be utilized in a combined reliability attack. We confirm that iPUFs are harder to break than regular XOR Arbiter PUFs. However, we are still able to break (1,10)-iPUF instances, which were originally assumed to be secure, with less than 107 PUF response queries.


2007 ◽  
Vol 51 (1-2) ◽  
pp. 43
Author(s):  
Balázs Polgár ◽  
Endre Selényi
Keyword(s):  

2019 ◽  
Vol 63 (5) ◽  
pp. 50401-1-50401-7 ◽  
Author(s):  
Jing Chen ◽  
Jie Liao ◽  
Huanqiang Zeng ◽  
Canhui Cai ◽  
Kai-Kuang Ma

Abstract For a robust three-dimensional video transmission through error prone channels, an efficient multiple description coding for multi-view video based on the correlation of spatial polyphase transformed subsequences (CSPT_MDC_MVC) is proposed in this article. The input multi-view video sequence is first separated into four subsequences by spatial polyphase transform and then grouped into two descriptions. With the correlation of macroblocks in corresponding subsequence positions, these subsequences should not be coded in completely the same way. In each description, one subsequence is directly coded by the Joint Multi-view Video Coding (JMVC) encoder and the other subsequence is classified into four sets. According to the classification, the indirectly coding subsequence selectively employed the prediction mode and the prediction vector of the counter directly coding subsequence, which reduces the bitrate consumption and the coding complexity of multiple description coding for multi-view video. On the decoder side, the gradient-based directional interpolation is employed to improve the side reconstructed quality. The effectiveness and robustness of the proposed algorithm is verified by experiments in the JMVC coding platform.


Author(s):  
Yaniv Aspis ◽  
Krysia Broda ◽  
Alessandra Russo ◽  
Jorge Lobo

We introduce a novel approach for the computation of stable and supported models of normal logic programs in continuous vector spaces by a gradient-based search method. Specifically, the application of the immediate consequence operator of a program reduct can be computed in a vector space. To do this, Herbrand interpretations of a propositional program are embedded as 0-1 vectors in $\mathbb{R}^N$ and program reducts are represented as matrices in $\mathbb{R}^{N \times N}$. Using these representations we prove that the underlying semantics of a normal logic program is captured through matrix multiplication and a differentiable operation. As supported and stable models of a normal logic program can now be seen as fixed points in a continuous space, non-monotonic deduction can be performed using an optimisation process such as Newton's method. We report the results of several experiments using synthetically generated programs that demonstrate the feasibility of the approach and highlight how different parameter values can affect the behaviour of the system.


2009 ◽  
Vol 31 (2) ◽  
pp. 196-206 ◽  
Author(s):  
Yong-Quan ZHOU ◽  
Ming ZHANG ◽  
Bin ZHAO

Sign in / Sign up

Export Citation Format

Share Document