Synthesis of Ionic Liquids Originated from Natural Products

Author(s):  
Hiroyuki Ohno

Metabolomics ◽  
2017 ◽  
Vol 13 (11) ◽  
Author(s):  
Nadine Strehmel ◽  
David Strunk ◽  
Veronika Strehmel


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6119
Author(s):  
Mahmood M. S. Abdullah ◽  
Hamad A. Al-Lohedan

In the last few decades, there has been an increasing trend for the usage of natural products and their derivatives as green and renewable oil-filed chemicals. Use of these compounds or their derivatives contributes to reducing the use of traditional chemicals, and enhances green chemistry principles. Curcumin (CRC) is one of the most popular natural products and is widely available. The green character, antioxidant action, and low cost of CRC prompt its use in several applications. In the present study, Curcumin was used to synthesize two new amphiphilic ionic liquids (AILs) by reacting with 1,3-propanesultone or bromoacetic acid to produce corresponding sulfonic and carboxylic acids, CRC-PS and CRC-BA, respectively. Following this, the formed CRC-PS and CRC-BA were allowed to react with 12-(2-hydroxyethyl)-15-(4-nonylphenoxy)-3,6,9-trioxa-12-azapentadecane-1,14-diol (HNTA) to form corresponding AILs, GCP-IL and GRB-IL, respectively. The chemical structures, surface tension, interfacial tension, and relative solubility number (RSN) of the synthesized AILs were investigated. The efficiency of GCP-IL and GRB-IL to demulsify water in heavy crude oil (W/O) emulsions was also investigated, where we observed that both GCP-IL and GRB-IL served as high-efficiency demulsifiers and the efficiency increased with a decreased ratio of water in W/O emulsion. Moreover, the data showed an increased efficiency of these AILs with an increased concentration. Among the two AILs, under testing conditions, GCP-IL exhibited a higher efficiency, shorter demulsification time, and cleaner demulsified water.



ChemInform ◽  
2003 ◽  
Vol 34 (42) ◽  
Author(s):  
James H. Jr. Davis


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4004
Author(s):  
Yan Cheng ◽  
Fumin Xue ◽  
Shuai Yu ◽  
Shichao Du ◽  
Yu Yang

Subcritical water refers to high-temperature and high-pressure water. A unique and useful characteristic of subcritical water is that its polarity can be dramatically decreased with increasing temperature. Therefore, subcritical water can behave similar to methanol or ethanol. This makes subcritical water a green extraction fluid used for a variety of organic species. This review focuses on the subcritical water extraction (SBWE) of natural products. The extracted materials include medicinal and seasoning herbs, vegetables, fruits, food by-products, algae, shrubs, tea leaves, grains, and seeds. A wide range of natural products such as alkaloids, carbohydrates, essential oil, flavonoids, glycosides, lignans, organic acids, polyphenolics, quinones, steroids, and terpenes have been extracted using subcritical water. Various SBWE systems and their advantages and drawbacks have also been discussed in this review. In addition, we have reviewed co-solvents including ethanol, methanol, salts, and ionic liquids used to assist SBWE. Other extraction techniques such as microwave and sonication combined with SBWE are also covered in this review. It is very clear that temperature has the most significant effect on SBWE efficiency, and thus, it can be optimized. The optimal temperature ranges from 130 to 240 °C for extracting the natural products mentioned above. This review can help readers learn more about the SBWE technology, especially for readers with an interest in the field of green extraction of natural products. The major advantage of SBWE of natural products is that water is nontoxic, and therefore, it is more suitable for the extraction of herbs, vegetables, and fruits. Another advantage is that no liquid waste disposal is required after SBWE. Compared with organic solvents, subcritical water not only has advantages in ecology, economy, and safety, but also its density, ion product, and dielectric constant can be adjusted by temperature. These tunable properties allow subcritical water to carry out class selective extractions such as extracting polar compounds at lower temperatures and less polar ingredients at higher temperatures. SBWE can mimic the traditional herbal decoction for preparing herbal medication and with higher extraction efficiency. Since SBWE employs high-temperature and high-pressure, great caution is needed for safe operation. Another challenge for application of SBWE is potential organic degradation under high temperature conditions. We highly recommend conducting analyte stability checks when carrying out SBWE. For analytes with poor SBWE efficiency, a small number of organic modifiers such as ethanol, surfactants, or ionic liquids may be added.



2013 ◽  
Vol 76 (11) ◽  
pp. 2162-2173 ◽  
Author(s):  
Yuntao Dai ◽  
Jaap van Spronsen ◽  
Geert-Jan Witkamp ◽  
Robert Verpoorte ◽  
Young Hae Choi


2017 ◽  
Vol 70 (6) ◽  
pp. 699 ◽  
Author(s):  
Koki Munakata ◽  
Masahiro Yoshizawa-Fujita ◽  
Masahiro Rikukawa ◽  
Toyonobu Usuki

Lemon myrtle is the richest natural source of citral, which has potential medicinal applications. In this study, citral was extracted from lemon myrtle using cellulose-dissolving ionic liquids (ILs), 1-ethyl-3-methylimidazolium methylphosphonate ([C2mim][(MeO)(H)PO2]), N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium chloride ([DEME]Cl), and N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium 2-methoxyacetate ([DEME][MOAc]). The extraction yield of citral obtained using ILs was up to 2.1 times higher than that obtained using ethanol. The ILs could be recycled and reused nine times for the extraction of citral. The present method provides a greener process when compared with conventional approaches and may be applicable for the extraction of other natural products.



Sign in / Sign up

Export Citation Format

Share Document