scholarly journals Lectures on Two-Dimensional Noncommutative Gauge Theory Quantization

Author(s):  
L.D. Paniak ◽  
R.J. Szabo
1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


2003 ◽  
Vol 673 (1-2) ◽  
pp. 301-318 ◽  
Author(s):  
P.A. Horváthy ◽  
L. Martina ◽  
P.C. Stichel

2012 ◽  
Vol 98 (2) ◽  
pp. 21002 ◽  
Author(s):  
M. Gomes ◽  
J. R. Nascimento ◽  
A. Yu. Petrov ◽  
A. J. da Silva

1976 ◽  
Vol 116 (1) ◽  
pp. 233-252 ◽  
Author(s):  
Metin Durgut

2007 ◽  
Vol 22 (28) ◽  
pp. 5155-5172 ◽  
Author(s):  
R. B. MANN ◽  
E. M. POPESCU

Non-Abelian higher gauge theory has recently emerged as a generalization of standard gauge theory to higher-dimensional (two-dimensional in the present context) connection forms, and as such, it has been successfully applied to the non-Abelian generalizations of the Yang–Mills theory and 2-form electrodynamics. (2+1)-dimensional gravity, on the other hand, has been a fertile testing ground for many concepts related to classical and quantum gravity, and it is therefore only natural to investigate whether we can find an application of higher gauge theory in this latter context. In the present paper we investigate the possibility of applying the formalism of higher gauge theory to gravity in 2+1 dimensions, and we show that a nontrivial model of (2+1)-dimensional gravity coupled to scalar and tensorial matter fields — the ΣΦEA model — can be formulated as a higher gauge theory (as well as a standard gauge theory). Since the model has a very rich structure — it admits as solutions black-hole BTZ-like geometries, particle-like geometries as well as Robertson–Friedman–Walker cosmological-like expanding geometries — this opens a wide perspective for higher gauge theory to be tested and understood in a relevant gravitational context. Additionally, it offers the possibility of studying gravity in 2+1 dimensions coupled to matter in an entirely new framework.


Sign in / Sign up

Export Citation Format

Share Document