Baryon bound state in two-dimensional SU(N) gauge theory

1976 ◽  
Vol 116 (1) ◽  
pp. 233-252 ◽  
Author(s):  
Metin Durgut
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. V. Kirichenko ◽  
V. A. Stephanovich

AbstractWe study the joint effect of disorder and Coulomb interaction screening on the exciton spectra in two-dimensional (2D) structures. These can be van der Waals structures or heterostructures of organic (polymeric) semiconductors as well as inorganic substances like transition metal dichalcogenides. We consider 2D screened hydrogenic problem with Rytova–Keldysh interaction by means of so-called fractional Scrödinger equation. Our main finding is that above synergy between screening and disorder either destroys the exciton (strong screening) or promote the creation of a bound state, leading to its collapse in the extreme case. Our second finding is energy levels crossing, i.e. the degeneracy (with respect to index $$\mu $$ μ ) of the exciton eigenenergies at certain discrete value of screening radius. Latter effects may also be related to the quantum manifestations of chaotic exciton behavior in above 2D semiconductor structures. Hence, they should be considered in device applications, where the interplay between dielectric screening and disorder is important.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


2012 ◽  
Vol 98 (2) ◽  
pp. 21002 ◽  
Author(s):  
M. Gomes ◽  
J. R. Nascimento ◽  
A. Yu. Petrov ◽  
A. J. da Silva

2016 ◽  
Vol 31 (22) ◽  
pp. 1643004 ◽  
Author(s):  
Graham D. Kribs ◽  
Ethan T. Neil

We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.


2020 ◽  
Vol 35 (21) ◽  
pp. 2050170
Author(s):  
Yu. M. Pismak ◽  
D. Shukhobodskaia

In the model with Chern-Simons potential describing the coupling of electromagnetic field with a two-dimensional material, the possibility of the appearance of bound field states, vanishing at sufficiently large distances from interacting with its macro-objects, is considered. As an example of such two-dimensional material object we consider a homogeneous isotropic plane. Its interaction with electromagnetic field is described by a modified Maxwell equation with singular potential. The analysis of their solution shows that the bound state of field cannot arise without external charges and currents. In the model with currents and charges the Chern-Simons potential in the modified Maxwell equations creates bound state in the form of the electromagnetic wave propagating along the material plane with exponentially decreasing amplitude in the orthogonal to its direction.


Sign in / Sign up

Export Citation Format

Share Document