Predicate Selection for Structural Decision Trees

Author(s):  
K. S. Ng ◽  
J. W. Lloyd
Keyword(s):  



2017 ◽  
Vol 11 (1) ◽  
pp. 2-15 ◽  
Author(s):  
René Michel ◽  
Igor Schnakenburg ◽  
Tobias von Martens

Purpose This paper aims to address the effective selection of customers for direct marketing campaigns. It introduces a new method to forecast campaign-related uplifts (also known as incremental response modeling or net scoring). By means of these uplifts, only the most responsive customers are targeted by a campaign. This paper also aims at calculating the financial impact of the new approach compared to the classical (gross) scoring methods. Design/methodology/approach First, gross and net scoring approaches to customer selection for direct marketing campaigns are compared. After that, it is shown how net scoring can be applied in practice with regard to different strategical objectives. Then, a new statistic for net scoring based on decision trees is developed. Finally, a business case based on real data from the financial sector is calculated to compare gross and net scoring approaches. Findings Whereas gross scoring focuses on customers with a high probability of purchase, regardless of being targeted by a campaign, net scoring identifies those customers who are most responsive to campaigns. A common scoring procedure – decision trees – can be enhanced by the new statistic to forecast those campaign-related uplifts. The business case shows that the selected scoring method has a relevant impact on economical indicators. Practical implications The contribution of net scoring to campaign effectiveness and efficiency is shown by the business case. Furthermore, this paper suggests a framework for customer selection, given strategical objectives, e.g. minimizing costs or maximizing (gross or lift)-added value, and presents a new statistic that can be applied to common scoring procedures. Originality/value Despite its lever on the effectiveness of marketing campaigns, only few contributions address net scores up to now. The new χ2-statistic is a straightforward approach to the enhancement of decision trees for net scoring. Furthermore, this paper is the first to the application of net scoring with regard to different strategical objectives.



2020 ◽  
Vol 9 (4) ◽  
pp. 230 ◽  
Author(s):  
Izabela Karsznia ◽  
Karolina Sielicka

Effective settlements generalization for small-scale maps is a complex and challenging task. Developing a consistent methodology for generalizing small-scale maps has not gained enough attention, as most of the research conducted so far has concerned large scales. In the study reported here, we want to fill this gap and explore settlement characteristics, named variables that can be decisive in settlement selection for small-scale maps. We propose 33 variables, both thematic and topological, which may be of importance in the selection process. To find essential variables and assess their weights and correlations, we use machine learning (ML) models, especially decision trees (DT) and decision trees supported by genetic algorithms (DT-GA). With the use of ML models, we automatically classify settlements as selected and omitted. As a result, in each tested case, we achieve automatic settlement selection, an improvement in comparison with the selection based on official national mapping agency (NMA) guidelines and closer to the results obtained in manual map generalization conducted by experienced cartographers.





2019 ◽  
Vol 83 ◽  
pp. 167-181 ◽  
Author(s):  
Navoda Senavirathne ◽  
Vicenç Torra


Author(s):  
Kristina Toutanova ◽  
Christopher D. Manning


2011 ◽  
Vol 27 (09) ◽  
pp. 2111-2117 ◽  
Author(s):  
HUO Wei-Feng ◽  
◽  
GAO Na ◽  
YAN Yan ◽  
LI Ji-Yang ◽  
...  


2019 ◽  
Author(s):  
I. Gaydamak ◽  
O. Pichugin ◽  
S. Rodionov ◽  
S. Panarina


Sign in / Sign up

Export Citation Format

Share Document