An Individual Adaptive Gain Parameter Backpropagation Algorithm for Complex-Valued Neural Networks

Author(s):  
Songsong Li ◽  
Toshimi Okada ◽  
Xiaoming Chen ◽  
Zheng Tang
2021 ◽  
pp. 1-20
Author(s):  
Shao-Qun Zhang ◽  
Zhi-Hua Zhou

Abstract Current neural networks are mostly built on the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons. This letter proposes the flexible transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity. The FT model employs a pair of parameters to model the neurotransmitters between neurons and puts up a neuron-exclusive variable to record the regulated neurotrophin density. Thus, the FT model can be formulated as a two-variable, two-valued function, taking the commonly used MP neuron model as its particular case. This modeling manner makes the FT model biologically more realistic and capable of handling complicated data, even spatiotemporal data. To exhibit its power and potential, we present the flexible transmitter network (FTNet), which is built on the most common fully connected feedforward architecture taking the FT model as the basic building block. FTNet allows gradient calculation and can be implemented by an improved backpropagation algorithm in the complex-valued domain. Experiments on a broad range of tasks show that FTNet has power and potential in processing spatiotemporal data. This study provides an alternative basic building block in neural networks and exhibits the feasibility of developing artificial neural networks with neuronal plasticity.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Huisheng Zhang ◽  
Chao Zhang ◽  
Wei Wu

The batch split-complex backpropagation (BSCBP) algorithm for training complex-valued neural networks is considered. For constant learning rate, it is proved that the error function of BSCBP algorithm is monotone during the training iteration process, and the gradient of the error function tends to zero. By adding a moderate condition, the weights sequence itself is also proved to be convergent. A numerical example is given to support the theoretical analysis.


2005 ◽  
Vol 15 (06) ◽  
pp. 435-443 ◽  
Author(s):  
XIAOMING CHEN ◽  
ZHENG TANG ◽  
CATHERINE VARIAPPAN ◽  
SONGSONG LI ◽  
TOSHIMI OKADA

The complex-valued backpropagation algorithm has been widely used in fields of dealing with telecommunications, speech recognition and image processing with Fourier transformation. However, the local minima problem usually occurs in the process of learning. To solve this problem and to speed up the learning process, we propose a modified error function by adding a term to the conventional error function, which is corresponding to the hidden layer error. The simulation results show that the proposed algorithm is capable of preventing the learning from sticking into the local minima and of speeding up the learning.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Meng Hui ◽  
Jiahuang Zhang ◽  
Jiao Zhang ◽  
Herbert Ho-Ching Iu ◽  
Rui Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document