scholarly journals Sea Level Variability in the Strait of Gibraltar from Along-Track High Spatial Resolution Altimeter Products

Author(s):  
Jesús Gómez-Enri ◽  
Stefano Vignudelli ◽  
Alfredo Izquierdo ◽  
Marcello Passaro ◽  
Carlos José González ◽  
...  
2020 ◽  
Vol 12 (3) ◽  
pp. 379
Author(s):  
Qianran Zhang ◽  
Fangjie Yu ◽  
Ge Chen

Sea level variability, which is less than ~100 km in scale, is important in upper-ocean circulation dynamics and is difficult to observe by existing altimetry observations; thus, interferometric altimetry, which effectively provides high-resolution observations over two swaths, was developed. However, validating the sea level variability in two dimensions is a difficult task. In theory, using the steric method to validate height variability in different pixels is feasible and has already been proven by modelled and altimetry gridded data. In this paper, we use Argo data around a typical mesoscale eddy and altimetry along-track data in the North Pacific to analyze the relationship between steric data and along-track data (SD-AD) at two points, which indicates the feasibility of the steric method. We also analyzed the result of SD-AD by the relationship of the distance of the Argo and the satellite in Point 1 (P1) and Point 2 (P2), the relationship of two Argo positions, the relationship of the distance between Argo positions and the eddy center and the relationship of the wind. The results showed that the relationship of the SD-AD can reach a correlation coefficient of ~0.98, the root mean square deviation (RMSD) was ~1.8 cm, the bias was ~0.6 cm. This proved that it is feasible to validate interferometric altimetry data using the steric method under these conditions.


2019 ◽  
Vol 221 ◽  
pp. 596-608 ◽  
Author(s):  
J. Gómez-Enri ◽  
C.J. González ◽  
M. Passaro ◽  
S. Vignudelli ◽  
O. Álvarez ◽  
...  

2008 ◽  
Vol 20 (6) ◽  
pp. 605-606 ◽  
Author(s):  
Cheng-Chien Liu ◽  
Yueh-Cheng Chang ◽  
Stefani Huang ◽  
Frank Wu ◽  
An-Ming Wu ◽  
...  

Coordinating and collecting satellite data of changing polar environments is one of the prime activities of International Polar Year (IPY) 2007–08 (Rapley et al. 2004). Within this framework, the requirements to obtain spaceborne snapshots of the Polar Regions and key high latitude processes have been prepared by the international cryospheric community under the auspices of the approved IPY project titled the Global Inter-agency IPY Polar Snapshot Year (GIIPSY). Earlier efforts in manoeuvring Radarsat-1 in a special mode provided radar images with a spatial resolution of 30 m over the entirety of Antarctica during September–October 1997 (Jezek et al. 1998). Limited to their altitude (AL), swath (SW) and pointing capability (PC), however, the operation of optical satellites with high-spatial-resolution sensors is generally restricted to certain latitudes. For example, Landsat (AL:705 km/SW:185 km/PC:0°) mission has been able to provide high-spatial-resolution optical imagery only to ~81°N to ~81°S since the 1980s. The coverage is now extended to ~86° by ASTER (AL:705 km/SW:60 km/PC:24°) (Kargel et al. 2005), but there has been no availability of space-borne optical image of the polar regions with a resolution equivalent or higher than Landsat type sensors with latitudes higher than 86°, until the successful operation of Formosat-2 (AL:891 km/SW:24 km/PC: ± 45° across and along track). Equipped with two-axes high torque reaction wheels, Formosat-2 is able to point not only to ± 45° across track, but also to ± 45° along track (Liu et al. 2007). Figure 1 shows the accessible areas (longer lines: along track ± 0°, across track ± 45°; shorter lines: along track ± 0°, across track ± 30°) and the corresponding ground tracks (solid curves) of Formosat-2 in the Polar Regions. Note that the accessible areas would be even greater if the pointing direction is also set to ± 45° along track. The detailed comparison of Formosat-2 with other similar sensors, including the multi-spectral bands and imaging repeat period, can be found in table I in Liu et al. (2007). To support IPY 2007–08, the National Space Organization (NSPO) of Taiwan launched a Polar Imaging Campaign (PIC) in March 2006. Up to September 2007, a total of 1 131 624 km2 in the North Polar Region and a total of 57 408 km2 in the South Polar Region had been imaged by Formosat-2. All Formosat-2 images taken during the NSPO PIC are available from the authors.


2019 ◽  
Author(s):  
Maxime Ballarotta ◽  
Clément Ubelmann ◽  
Marie-Isabelle Pujol ◽  
Guillaume Taburet ◽  
Florent Fournier ◽  
...  

Abstract. The DUACS system produces sea level global and regional maps that serve oceanographic applications, climate forecasting centers, geophysics and biology communities. These maps are constructed from optimal interpolation of altimeter observations and are provided on a global 1/4° × 1/4° (longitude × latitude) and daily grid resolution framework (1/8° × 1/8° longitude × latitude grid for the regional products) through the Copernicus Marine Environment Monitoring Service (CMEMS). Yet, the dynamical content of these maps is not ensured to have a full 1/4° spatial and 1-day resolution, due to the filtering properties of the optimal interpolation. In the present study, we estimate the effective spatial and temporal resolutions of the newly reprocessed delayed-time DUACS maps (aka, DUACS-DT2018). Our approach is based on the spectral coherence between maps and independent datasets (along-track and tide gauge observations), which represents the correlation between two sea level signals as a function of wavelength. We found that the spatial resolution of the DUACS-DT2018 global maps based on sampling by three altimeters simultaneously ranges from ~ 100 km-wavelength at high latitude to ~ 800 km-wavelength in the Equatorial band and the mean temporal resolution is ~ 28 days period. The mean effective spatial resolution at mid-latitude is estimated to ~ 200 km. The mean effective spatial resolution is ~ 120 km for the regional Mediterranean Sea product and ~ 140 km for the regional Black Sea product. An inter-comparison with former DUACS reprocessing systems (aka, DUACS-DT2010 and DUACS-DT2014) highlights the progress of the system over the past 8 years, in particular a gain of resolution in highly turbulent regions. The same diagnostic applied to maps constructed with two altimeters and maps with three altimeters confirms a modest increase of resolving capabilities and accuracies in the DUACS maps with the number of missions.


Author(s):  
K. Przybylski ◽  
A. J. Garratt-Reed ◽  
G. J. Yurek

The addition of so-called “reactive” elements such as yttrium to alloys is known to enhance the protective nature of Cr2O3 or Al2O3 scales. However, the mechanism by which this enhancement is achieved remains unclear. An A.E.M. study has been performed of scales grown at 1000°C for 25 hr. in pure O2 on Co-45%Cr implanted at 70 keV with 2x1016 atoms/cm2 of yttrium. In the unoxidized alloys it was calculated that the maximum concentration of Y was 13.9 wt% at a depth of about 17 nm. SIMS results showed that in the scale the yttrium remained near the outer surface.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


2003 ◽  
Vol 104 ◽  
pp. 247-250
Author(s):  
T. Bigault ◽  
E. Ziegler ◽  
Ch. Morawe ◽  
W. Ludwig ◽  
R. Soufli

Author(s):  
Kosuke Nomura ◽  
Ryutaro Oi ◽  
Takanori Senoh ◽  
Taiichiro Kurita ◽  
Takayuki Hamamoto

Sign in / Sign up

Export Citation Format

Share Document