Hybrid Sensor System for Bridge Deformation Monitoring: Interfacing with Structural Engineers

Author(s):  
Xiaolin Meng ◽  
Alan Dodson ◽  
Gethin Roberts ◽  
Emily Cosser
Author(s):  
M. Omidalizarandi ◽  
I. Neumann

In the current state-of-the-art, geodetic deformation analysis of natural and artificial objects (e.g. dams, bridges,...) is an ongoing research in both static and kinematic mode and has received considerable interest by researchers and geodetic engineers. In this work, due to increasing the accuracy of geodetic deformation analysis, a terrestrial laser scanner (TLS; here the Zoller+Fröhlich IMAGER 5006) and a high resolution digital camera (Nikon D750) are integrated to complementarily benefit from each other. In order to optimally combine the acquired data of the hybrid sensor system, a highly accurate estimation of the extrinsic calibration parameters between TLS and digital camera is a vital preliminary step. Thus, the calibration of the aforementioned hybrid sensor system can be separated into three single calibrations: calibration of the camera, calibration of the TLS and extrinsic calibration between TLS and digital camera. In this research, we focus on highly accurate estimating extrinsic parameters between fused sensors and target- and targetless (mutual information) based methods are applied. In target-based calibration, different types of observations (image coordinates, TLS measurements and laser tracker measurements for validation) are utilized and variance component estimation is applied to optimally assign adequate weights to the observations. Space resection bundle adjustment based on the collinearity equations is solved using Gauss-Markov and Gauss-Helmert model. Statistical tests are performed to discard outliers and large residuals in the adjustment procedure. At the end, the two aforementioned approaches are compared and advantages and disadvantages of them are investigated and numerical results are presented and discussed.


2010 ◽  
Vol 130 (10) ◽  
pp. 495-500
Author(s):  
Toyokazu Tambo ◽  
Yuuji Miyamoto ◽  
Shuuhei Sakashita ◽  
Miki Shibata
Keyword(s):  

2018 ◽  
Vol 138 (10) ◽  
pp. 448-448
Author(s):  
Gen Hashiguchi ◽  
Hiroshi Kezuka ◽  
Noriaki Ikenaga ◽  
Masayuki Sohgawa

2019 ◽  
Vol E102.C (7) ◽  
pp. 558-564
Author(s):  
Takashi NAKAMURA ◽  
Masahiro TADA ◽  
Hiroyuki KIMURA

CHIPSET ◽  
2020 ◽  
Vol 1 (02) ◽  
pp. 61-68
Author(s):  
Anisha Fadia Haya ◽  
Werman kasoep ◽  
Nefy Puteri Novani

This study aims to create a system that can monitor gas cylinders where this device consists of two systems, the first is a system to measure the weight of 3kg LPG gas cylinders to find the remaining gas which will then be displayed on the LCD, and the second the system gives a notification (alarm) if there is a gas leak via SMS. This system consists of Arduino UNO Microcontroller components, Load cell Sensor, MQ-6 Sensor, and SIM800L GSM Module. For overall system testing, the load cell sensor system can display a percentage of the weight value obtained an error rate of 0%, this indicates that the formula used in the program runs according to what is desired. In the MQ-6 sensor system can make the buzzer on at a value >= 700 ppm, the results of the buzzer can live when the detected gas value >= 700 ppm, this is as desired. In the sim800L gsm module system can send leak notifications, the results obtained that the module can send SMS notifications. And the system turns on the buzzer when the LPG gas has reached the minimum limit, the results obtained by the buzzer will sound when the remaining gas value <= 16%. Based on tests conducted on this system the system can measure the desired weight of the cylinder to look for the remaining gas in the form of a percentage and detect a gas leak and then send an SMS notification.


Sign in / Sign up

Export Citation Format

Share Document