Integration of Strongly Damped Mechanical Systems by Runge-Kutta Methods

Author(s):  
T. Stumpp
Author(s):  
C. H. Lamarque ◽  
O. Janin

Abstract We study the performances of several numerical methods (Paoli-Schatzman, Newmark, Runge-Kutta) in order to compute periodic behavior of a simple one-degree-of-freedom impacting oscillator. Some theoretical results are given and numerical tests are performed. We compare mathematical and numerical results using our simple example exhibiting either finite or infinite number of impacts per period. Comparison of exact and numerical solution provides a practical order for each scheme. We conclude about the use of the different numerical methods.


Author(s):  
Bernhard Schweizer ◽  
Pu Li

Regarding constrained mechanical systems, we are faced with index-3 differential-algebraic equation (DAE) systems. Direct discretization of the index-3 DAE systems only enforces the position constraints to be fulfilled at the integration-time points, but not the hidden constraints. In addition, order reduction effects are observed in the velocity variables and the Lagrange multipliers. In literature, different numerical techniques have been suggested to reduce the index of the system and to handle the numerical integration of constrained mechanical systems. This paper deals with an alternative concept, called collocated constraints approach. We present index-2 and index-1 formulations in combination with implicit Runge–Kutta methods. Compared with the direct discretization of the index-3 DAE system, the proposed method enforces also the constraints on velocity and—in case of the index-1 formulation—the constraints on acceleration level. The proposed method may very easily be implemented in standard Runge–Kutta solvers. Here, we only discuss mechanical systems. The presented approach can, however, also be applied for solving nonmechanical higher-index DAE systems.


Sign in / Sign up

Export Citation Format

Share Document