Wave tank study of phase velocities and damping of gravity-capillary wind waves in the presence of surface films

2006 ◽  
pp. 129-143 ◽  
Author(s):  
Stanislav A. Ermakov ◽  
Irina A. Sergievskaya ◽  
Emma M. Zuikova ◽  
Vladimir Yu. Goldblat ◽  
Yury B. Shchegolkov
Author(s):  
S.A. Ermakov ◽  
I.A. Sergievskaya ◽  
E.M. Zuikova ◽  
V.Yu. Goldblat ◽  
Yu.B. Shchegolkov ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (13) ◽  
pp. 2462
Author(s):  
Stanislav A. Ermakov ◽  
Irina A. Sergievskaya ◽  
Ivan A. Kapustin

Strong variability of Ka-band radar backscattering from short wind waves on the surface of water covered with surfactant films in the presence of internal waves (IW) was studied in wave tank experiments. It has been demonstrated that modulation of Ka-band radar return due to IW strongly depends on the relationship between the phase velocity of IW and the velocity of drifting surfactant films. An effect of the strong increase in surfactant concentration was revealed in convergent zones, associated with IW orbital velocities in the presence of a “resonance” surface steady current, the velocity of which was close to the IW phase velocity. A phenomenological model of suppression and modulations in the spectrum of small-scale wind waves due to films and IW was elaborated. It has been shown that backscatter modulation could not be explained by the modulation of free (linear) millimeter-scale Bragg waves, but was associated with the modulation of bound (parasitic) capillary ripples generated by longer, cm–dm-scale waves—a “cascade” modulation mechanism. Theoretical analysis based on the developed model was found to be consistent with experiments. Field observations which qualitatively illustrated the effect of strong modulation of Ka-band radar backscatter due to IW in the presence of resonance drift of surfactant films are presented.


2017 ◽  
Vol 34 (10) ◽  
pp. 2129-2139 ◽  
Author(s):  
Naohisa Takagaki ◽  
Satoru Komori ◽  
Mizuki Ishida ◽  
Koji Iwano ◽  
Ryoichi Kurose ◽  
...  

AbstractIt is important to develop a wave-generation method for extending the fetch in laboratory experiments, because previous laboratory studies were limited to the fetch shorter than several dozen meters. A new wave-generation method is proposed for generating wind waves under long-fetch conditions in a wind-wave tank, using a programmable irregular-wave generator. This new method is named a loop-type wave-generation method (LTWGM), because the waves with wave characteristics close to the wind waves measured at the end of the tank are reproduced at the entrance of the tank by the programmable irregular-wave generator and the mechanical wave generation is repeated at the entrance in order to increase the fetch. Water-level fluctuation is measured at both normal and extremely high wind speeds using resistance-type wave gauges. The results show that, at both wind speeds, LTWGM can produce wind waves with long fetches exceeding the length of the wind-wave tank. It is observed that the spectrum of wind waves with a long fetch reproduced by a wave generator is consistent with that of pure wind-driven waves without a wave generator. The fetch laws between the significant wave height and the peak frequency are also confirmed for the wind waves under long-fetch conditions. This implies that the ideal wind waves under long-fetch conditions can be reproduced using LTWGM with the programmable irregular-wave generator.


2008 ◽  
Vol 38 (7) ◽  
pp. 1597-1606 ◽  
Author(s):  
T. Lamont-Smith ◽  
T. Waseda

Abstract Wave wire data from the large wind wave tank of the Ocean Engineering Laboratory at the University of California, Santa Barbara, are analyzed, and comparisons are made with published data collected in four other wave tanks. The behavior of wind waves at various fetches (7–80 m) is very similar to the behavior observed in the other tanks. When the nondimensional frequency F* or nondimensional significant wave height H* is plotted against nondimensional fetch x*, a large scatter in the data points is found. Multivariate regression to the dimensional parameters shows that significant wave height Hsig is a function of U2x and frequency F is a function of U1.25x, where U is the wind speed and x is the horizontal distance, with the result that in general for wind waves at a particular fetch in a wave tank, approximately speaking, the wave frequency is inversely proportional to the square root of the wind speed and the wavelength is proportional to the wind speed. Similarly, the wave height is proportional to U1.5 and the orbital velocity is proportional to U. Comparison with field data indicates a transition from this fetch law to the conventional one [the Joint North Sea Wave Project (JONSWAP)] for longer fetch. Despite differences in the fetch relationship for the wave tank and the field data, the wave height and wave period satisfy Toba’s 3/2 power law. This law imposes a strong constraint on the evolution of wind wave energy and frequency; consequently, the energy and momentum retention rate are not independent. Both retention rates grow with wind speed and fetch at the short fetches present in the wave tank. The observed retention rates are completely different from those typically observed in the field, but the same constraint (Toba’s 3/2 law) holds true.


Author(s):  
А. Марченко ◽  
A. Marchenko ◽  
И. Никитин ◽  
I. Nikitin

The graphical analytical technique for refraction waves in coastal water areas under condition of water slope relief in shapes of bathymetry charts. The given technique is based on results of theoretical studies in water areas refractions in sea bays made by the authoress. The convergences data obtained are suited for foolproof calculations results for proposed methods of wave tank supervision along with natural of measurements and numerical results. The given technique make it possible to recreate the approximate picture wave field refraction on the coastal zone up to the border of waves turnover.


1979 ◽  
Vol 1979 (1) ◽  
pp. 665-674 ◽  
Author(s):  
Hsien-Ta Liu ◽  
Jung-Tai Lin

ABSTRACT Laboratory experiments were performed to investigate the effects of an oil slick on ocean waves. This is part of an integrated program aimed at understanding the vertical dispersion of oil in the upper ocean. The experiments were conducted in a wind-wave tank which measured 9.1 m long, 1.2 m wide, and 1.8 m deep. Both wind waves and mechanically-generated waves with wind were considered. No. 2 Diesel oil was fed at a rate of 0.35 liters/sec onto the water surface from the upstream end of the wave tank. To measure the wave profiles, an optical sensor-photodiode wave gauge was developed and is described herein. The effects of an oil slick on wind waves were examined in terms of wave profiles and rms wave amplitudes. For wind waves, the presence of the oil slick damps the waves significantly. The amount of damping increases with the wind speed in the range from U∞ = 4 m/sec to 10 m/sec. At U∞ = 10 m/sec, the oil slick breaks into small lenses. The rms amplitudes of the wind-generated waves increase with the fetch without the oil slick, but they do not change appreciably in the presence of the oil slick. For mechanically-generated waves with wind, wave damping by the oil slick becomes insignificant when the waves are sufficiently steep and wave breaking occurs. Prior to wave breaking, however, steepening of the wave crests due to the presence of the oil slick has been observed occasionally as a result of the reduction in the surface tension by the oil film.


1998 ◽  
Vol 103 (C2) ◽  
pp. 3167-3178 ◽  
Author(s):  
Martin Gade ◽  
Werner Alpers ◽  
Heinrich Hühnerfuss ◽  
Philipp A. Lange

Sign in / Sign up

Export Citation Format

Share Document