scholarly journals Loop-Type Wave-Generation Method for Generating Wind Waves under Long-Fetch Conditions

2017 ◽  
Vol 34 (10) ◽  
pp. 2129-2139 ◽  
Author(s):  
Naohisa Takagaki ◽  
Satoru Komori ◽  
Mizuki Ishida ◽  
Koji Iwano ◽  
Ryoichi Kurose ◽  
...  

AbstractIt is important to develop a wave-generation method for extending the fetch in laboratory experiments, because previous laboratory studies were limited to the fetch shorter than several dozen meters. A new wave-generation method is proposed for generating wind waves under long-fetch conditions in a wind-wave tank, using a programmable irregular-wave generator. This new method is named a loop-type wave-generation method (LTWGM), because the waves with wave characteristics close to the wind waves measured at the end of the tank are reproduced at the entrance of the tank by the programmable irregular-wave generator and the mechanical wave generation is repeated at the entrance in order to increase the fetch. Water-level fluctuation is measured at both normal and extremely high wind speeds using resistance-type wave gauges. The results show that, at both wind speeds, LTWGM can produce wind waves with long fetches exceeding the length of the wind-wave tank. It is observed that the spectrum of wind waves with a long fetch reproduced by a wave generator is consistent with that of pure wind-driven waves without a wave generator. The fetch laws between the significant wave height and the peak frequency are also confirmed for the wind waves under long-fetch conditions. This implies that the ideal wind waves under long-fetch conditions can be reproduced using LTWGM with the programmable irregular-wave generator.

Author(s):  
Tim Bunnik ◽  
Rene´ Huijsmans

During the last few years there has been a strong growth in the availability and capabilities of numerical wave tanks. In order to assess the accuracy of such methods, a validation study was carried out. The study focuses on two types of numerical wave tanks: 1. A numerical wave tank based a non-linear potential flow algorithm. 2. A numerical wave tank based on a Volume of Fluid algorithm. The first algorithm uses a structured grid with triangular elements and a surface tracking technique. The second algorithm uses a structured, Cartesian grid and a surface capturing technique. Validation material is available by means of waves measured at multiple locations in two different model test basins. The first method is capable of generating waves up to the break limit. Wave absorption is therefore modeled by means of a numerical beach and not by mean of the parabolic beach that is used in the model basin. The second method is capable of modeling wave breaking. Therefore, the parabolic beach in the model test basin can be modeled and has also been included. Energy dissipation therefore takes place according to physics which are more related to the situation in the model test basin. Three types of waves are generated in the model test basin and in the numerical wave tanks. All these waves are generated on basin scale. The following waves are considered: 1. A scaled 100-year North-Sea wave (Hs = 0.24 meters, Tp = 2.0 seconds) in deep water (5 meters). 2. A scaled operational wave (Hs = 0.086 meters, Tp = 1.69 seconds) at intermediate water depth (0.86 meters) generated by a flap-type wave generator. 3. A scaled operational wave (Hs = 0.046 meters, Tp = 1.2 seconds) in shallow water (0.35 meters) generated by a piston-type wave generator. The waves are generated by means of a flap or piston-type wave generator. The motions of the wave generator in the simulations (either rotational or translational) are identical to the motions in the model test basin. Furthermore, in the simulations with intermediate water depth, the non-flat contour of the basin bottom (ramp) is accurately modeled. A comparison is made between the measured and computed wave elevation at several locations in the basin. The comparison focuses on: 1. Reflection characteristics of the model test basin and the numerical wave tanks. 2. The accuracy in the prediction of steep waves. 3. Second order effects like set-down in intermediate and shallow water depth. Furthermore, a convergence study is presented to check the grid independence of the wave tank predictions.


2020 ◽  
Vol 26 (15-16) ◽  
pp. 1297-1308 ◽  
Author(s):  
Yi Liu ◽  
Yuxi Zheng ◽  
Ruiyin Song ◽  
Junhua Chen ◽  
Heng Jin

Wave maker is one of the most important experimental equipment in marine engineering. To meet the demands of simulation of higher wave amplitude and compare the effect of piston and flap type wave generation, a new wave generation device was proposed and a new piston and flap type wave maker with a rotary-valve-control vibrator was developed. A mathematical model of the new wave maker was established and analysed by Simulink, and a series of experiments were conducted on the wave maker to analyze wave generation characteristics. The results show that the wave maker can adjust the distance of wave paddle and generate different regular waves. The bigger the axial opening size of the valve port, the larger the wave paddle amplitude and the wave amplitude; the higher the pressure, the higher the wave paddle amplitude and the wave amplitude. High frequency wave making is more efficient than the lower one, and piston type wave making is more efficient than those wave makers that generate waves by flap type.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 562 ◽  
Author(s):  
Shemer

The mechanisms governing the evolution of the wind-wave field in time and in space are not yet fully understood. Various theoretical approaches have been offered to model wind-wave generation. To examine their validity, detailed and accurate experiments under controlled conditions have to be carried out. Since it is next to impossible to get the required control of the governing parameters and to accumulate detailed data in field experiments, laboratory studies are needed. Extensive previously unavailable results on the spatial and temporal variation of wind waves accumulated in our laboratory under a variety of wind-forcing conditions and using diverse measuring techniques are reviewed. The spatial characteristics of the wind-wave field were determined using stereo video imaging. The turbulent airflow above wind waves was investigated using an X-hot film. The wave field under steady wind forcing as well as evolving from rest under impulsive loading was studied. An extensive discussion of the various aspects of wind waves is presented from a single consistent viewpoint. The advantages of the stochastic approach suggested by Phillips over the deterministic theory of wind-wave generation introduced by Miles are demonstrated. Essential differences between the spatial and the temporal analyses of wind waves’ evolution are discussed, leading to examination of the applicability of possible approaches to wind-wave modeling.


2008 ◽  
Vol 38 (7) ◽  
pp. 1597-1606 ◽  
Author(s):  
T. Lamont-Smith ◽  
T. Waseda

Abstract Wave wire data from the large wind wave tank of the Ocean Engineering Laboratory at the University of California, Santa Barbara, are analyzed, and comparisons are made with published data collected in four other wave tanks. The behavior of wind waves at various fetches (7–80 m) is very similar to the behavior observed in the other tanks. When the nondimensional frequency F* or nondimensional significant wave height H* is plotted against nondimensional fetch x*, a large scatter in the data points is found. Multivariate regression to the dimensional parameters shows that significant wave height Hsig is a function of U2x and frequency F is a function of U1.25x, where U is the wind speed and x is the horizontal distance, with the result that in general for wind waves at a particular fetch in a wave tank, approximately speaking, the wave frequency is inversely proportional to the square root of the wind speed and the wavelength is proportional to the wind speed. Similarly, the wave height is proportional to U1.5 and the orbital velocity is proportional to U. Comparison with field data indicates a transition from this fetch law to the conventional one [the Joint North Sea Wave Project (JONSWAP)] for longer fetch. Despite differences in the fetch relationship for the wave tank and the field data, the wave height and wave period satisfy Toba’s 3/2 power law. This law imposes a strong constraint on the evolution of wind wave energy and frequency; consequently, the energy and momentum retention rate are not independent. Both retention rates grow with wind speed and fetch at the short fetches present in the wave tank. The observed retention rates are completely different from those typically observed in the field, but the same constraint (Toba’s 3/2 law) holds true.


Author(s):  
Antoine Villefer ◽  
Michel Benoit ◽  
Damien Violeau ◽  
Christopher Luneau ◽  
Hubert Branger

AbstractA series of experiments were conducted in a wind-wave tank facility in Marseilles (France) to study the effects of preexisting swell conditions (represented by long mechanically-generated waves) on wind-wave growth with fetch. Both monochromatic and irregular (JONSWAP-type) long wave conditions with different values of wave steepness have been generated in the presence of a constant wind forcing, for several wind velocities. A spectral analysis of temporal wave signals combined with airflow measurements allowed to study the evolution of both wave systems with the aim of identifying the interaction mechanisms transportable to prototype scale. In particular, a specific method is used to separate the two wave systems in the measured bimodal spectra. In fetch-limited conditions, pure wind-wave growth is in accordance with anterior experiments, but differs from the prototype scale in terms of energy and frequency variations with fetch. Monochromatic long waves are shown to reduce the energy of the wind-waves significantly, as it was observed in anterior laboratory experiments. The addition of JONSWAP-type long waves instead results in a downshift of the wind-wave peak frequency but no significant energy reduction. Overall, it is observed that the presence of long waves affects the wind-wave energy and frequency variations with fetch. Finally, in the presence of JONSWAP-type long waves, variations of wind-wave energy and peak frequency with fetch appear in close agreement with the wind-wave growth observed at prototype scale both in terms of variations and nondimensional magnitude.


1982 ◽  
Vol 123 ◽  
pp. 425-442 ◽  
Author(s):  
H. Mitsuyasu ◽  
T. Honda

Spatial growth of mechanically generated water waves under the action of wind has been measured in a laboratory wind-wave flume both for pure water and for water containing a surfactant (sodium lauryl sulphate, concentration 2.6 × 10−2%). I n the latter case, no wind waves develop on the surface of the mechanically generated waves as well as on the still water surface for wind speeds up to U10≈ 15 m/s, where U10 is the wind velocity at the height Z = 10 m. Therefore we can study the wind-induced growth of monochromatic waves without the effects of co-existing short wind waves. The mechanically generated waves grew exponentially under the action of the wind, with fetch in both cases. The measured growth rate β for the pure water can be fitted by β/f = 0.34(U*/C)2 0.1 [lsime ] U*/C [lsime ] 1.0, where f is the frequency of the waves, C is the corresponding phase velocity, and U, is the friction velocity obtained from vertical wind profiles. The effect of the wave steepness H/L on the dimensionless growth rate β/f is not clear, but seems to be small. For water containing the surfactant, the measured growth rate is smaller than that for pure water, but the friction velocity of the wind is also small, and the above relation between β/f and U*/C holds approximately if the measured friction velocity U* is used for the relation.


Author(s):  
Joao Alcino de Andrade Martins

This paper discusses some aspects of the new technology in testing tank for Naval and Ocean Engineering developed at NAOE-Osaka University, Japan, based on the concept of active wavemakers all around the tank perimeter [1]. Past and present measurements shown that the wave field is homogeneous with some restrictions and can keep irregular wave more than 50 wave periods. The experimental results for platform model diffraction force are good and agree with theory and also with early tests [7]. The analyses of wave and platform model force measurements prove the new wave tank concept precision, usefulness and reliability.


1977 ◽  
Vol 82 (4) ◽  
pp. 767-793 ◽  
Author(s):  
W. J. Plant ◽  
J. W. Wright

Temporal and spatial development of short gravity waves in a linear wind-wave tank has been measured for wind speeds up to 15 m/s using microwave Doppler spectrometry. Surface waves of wavelength 4·1 cm, 9·8 cm, 16·5 cm and 36 cm were observed as a function of fetch, wind speed and wind duration. The waves grew exponentially from inception until they were about 10 dB smaller than their maximum height, and the temporal growth and spectral transport (spatial growth) rates were about equal when the wave amplitude was sufficiently small. The amplitude of a short gravity wave of fixed wavelength was found to decrease substantially at winds, fetches or durations greater than those at which the short gravity wave was approximately the dominant wave; such phenomena are sometimes referred to as overshoot. The dominant short gravity wave was observed to reach a maximum amplitude which depended only on wavelength, showing that wave breaking induced by an augmented wind drift cannot be the primary limitation to the wave height. Waves travelling against the wind were observed for wavelengths of 9·8 cm, 16·5 cm and 36 cm and were shown to be generated by the air flow at low wind speeds.Measured initial growth rates for 16·5 cm and 36 cm waves were greater than expected, suggesting the existence of a growth mechanism in addition to direct transfer from the wind via linear instability of the boundary-layer flow. Initial temporal growth rates and spectral transport rates were compared to yield an experimental determination of the magnitude of the sum of nonlinear interactions and dissipation in short gravity waves. If the steady-state energy input in the neighbourhood of the dominant wave occurs at the measured initial temporal growth rates, then most of the energy input is locally dissipated; relatively little is advected away. Calculated gravitycapillary nonlinear energy transfer rates match those determined from initial growth rates for 9·8 cm waves and the gravity–capillary wave interaction continues to be significant for waves as long as 16·5 cm. For longer waves the gravity–capillary interaction is too small to bring the short gravity wave to a steady state when it is the dominant wave of the wind-wave system.


2015 ◽  
Vol 45 (10) ◽  
pp. 2484-2496 ◽  
Author(s):  
Fabien Leckler ◽  
Fabrice Ardhuin ◽  
Charles Peureux ◽  
Alvise Benetazzo ◽  
Filippo Bergamasco ◽  
...  

AbstractThe energy level and its directional distribution are key observations for understanding the energy balance in the wind-wave spectrum between wind-wave generation, nonlinear interactions, and dissipation. Here, properties of gravity waves are investigated from a fixed platform in the Black Sea, equipped with a stereo video system that resolves waves with frequency f up to 1.4 Hz and wavelengths from 0.6 to 11 m. One representative record is analyzed, corresponding to young wind waves with a peak frequency fp = 0.33 Hz and a wind speed of 13 m s−1. These measurements allow for a separation of the linear waves from the bound second-order harmonics. These harmonics are negligible for frequencies f up to 3 times fp but account for most of the energy at higher frequencies. The full spectrum is well described by a combination of linear components and the second-order spectrum. In the range 2fp to 4fp, the full frequency spectrum decays like f−5, which means a steeper decay of the linear spectrum. The directional spectrum exhibits a very pronounced bimodal distribution, with two peaks on either side of the wind direction, separated by 150° at 4fp. This large separation is associated with a significant amount of energy traveling in opposite directions and thus sources of underwater acoustic and seismic noise. The magnitude of these sources can be quantified by the overlap integral I(f), which is found to increase sharply from less than 0.01 at f = 2fp to 0.11 at f = 4fp and possibly up to 0.2 at f = 5fp, close to the 0.5π value proposed in previous studies.


Author(s):  
V. G. Polnikov ◽  
G. A. Baidakov ◽  
Yu. I. Troitskaya

The aim of the work is to obtain estimates and parameterization of the dissipation rate of the turbulence kinetic energy of (TKE-dissipation) in the upper water layer, induced by the presence of wind waves at the surface. For this purpose, data from the laboratory measurements of the wind waves and three components of currents at six horizons in the upper water layer and four different winds, performed in the wind-wave channel of IAP RAS [1, 2], were used. It was established that for a majority of horizons, the frequency spectra, SUz( f ), for the vertical component of the flow velocity, Uz, induced by wind and waves, have the Kolmogorov-type ranges of the kind: Using the algorithms described in [3, 4], this fact allows us to obtain estimates of the TKE-dissipation at the corresponding horizons, and then establish the dependence of on the friction velocity, u*, the height of waves at the surface, a0, the peak frequency of the spectrum, p, and the depth of the horizon, z. The analysis of the obtained results allows (for the available data) to propose a parameterization of the form 0.00025 for which a physical interpretation is proposed.


Sign in / Sign up

Export Citation Format

Share Document