Phylogenetic Reconstruction Algorithms Based on Weighted 4-Trees

Author(s):  
Vincent Ranwez ◽  
Olivier Gascuel
2010 ◽  
Vol 20 (supp01) ◽  
pp. 1511-1532 ◽  
Author(s):  
S. POMPEI ◽  
E. CAGLIOTI ◽  
V. LORETO ◽  
F. TRIA

Phylogenetic methods have recently been rediscovered in several interesting areas among which immunodynamics, epidemiology and many branches of evolutionary dynamics. In many interesting cases the reconstruction of a correct phylogeny is blurred by high mutation rates and/or horizontal transfer events. As a consequence, a divergence arises between the true evolutionary distances and the distances between pairs of taxa as inferred from the available data, making the phylogenetic reconstruction a challenging problem. Mathematically this divergence translates in the non-additivity of the actual distances between taxa and the quest for new algorithms able to efficiently cope with these effects is wide open. In distance-based reconstruction methods, two properties of additive distances were extensively exploited as antagonist criteria to drive phylogeny reconstruction: on the one hand a local property of quartets, i.e. sets of four taxa in a tree, the four-point condition; on the other hand, a recently proposed formula that allows to write the tree length as a function of the distances between taxa, the Pauplin's formula. A deeper comprehension of the effects of the non-additivity on the inspiring principles of the existing reconstruction algorithms is thus of paramount importance. In this paper we present a comparative analysis of the performances of the most important distance-based phylogenetic algorithms. We focus in particular on the dependence of their performances on two main sources of non-additivity: back-mutation processes and horizontal transfer processes. The comparison is carried out in the framework of a set of generative algorithms for phylogenies that incorporate non-additivity in a tunable way.


2017 ◽  
Author(s):  
Martin D. Brazeau ◽  
Thomas Guillerme ◽  
Martin R. Smith

AbstractNon-independence of characters is a real phenomenon in phylogenetic data matrices, even though phylogenetic reconstruction algorithms generally assume character independence. In morphological datasets, the problem results in characters that cannot be applied to certain terminal taxa, with this inapplicability treated as “missing data” in a popular method of character coding. However, this treatment is known to create spurious tree length estimates on certain topologies, potentially leading to erroneous results in phylogenetic searches. Here we present a single-character algorithm for ancestral states reconstruction in datasets that have been coded using reductive coding. The algorithm uses up to four traversals on a tree to resolve final ancestral states – which are required in full before a tree can be scored. The algorithm employs explicit criteria for the resolution of ambiguity in applicable/inapplicable dichotomies and the optimization of missing data. We score trees following a previously published procedure that minimizes homoplasy over all characters. Our analysis of published datasets shows that, compared to traditional methods, our new method identifies different trees as “optimal”; as such, correcting for inapplicable data may significantly alter the outcome of tree searches.


2009 ◽  
Vol 57 (4) ◽  
pp. 175 ◽  
Author(s):  
E. Buschiazzo ◽  
N. J. Gemmell

Building on the recent publication of the first monotreme genome, that of the platypus, and the discovery that many platypus microsatellites are found in the genomes of three mammals (opossum, human, mouse) and two non-mammalian vertebrates (chicken, lizard), we investigated further the evolutionary conservation of microsatellites identified in the monotreme lineage and tested whether the conservation of microsatellites we observe in vertebrates has phylogenetic signal. Most conserved platypus microsatellites (75%) were found in one species, with the platypus sharing many more microsatellites with mammals than with reptiles (83% versus 30%). Within mammals, unexpectedly, many more platypus microsatellites had orthologues in the opossum genome than in that of either human or mouse, which was at odds with the very well supported view that monotremes diverged from a lineage containing both eutherians and marsupials (Theria hypothesis). We investigated the phylogenetic significance of microsatellite conservation through Bayesian and maximum parsimony tree reconstruction using presence/absence data of microsatellite loci conserved in a total of 18 species, including the platypus. Although models of evolution implemented in current phylogenetic reconstruction algorithms are not tailor-made for microsatellite data, we were able to construct vertebrate phylogenies that correspond well to the accepted mammalian phylogeny, with two of our three reconstructions supporting the Theria hypothesis. Our analysis provides ground for new theoretical development in phylogeny-based analyses of conserved microsatellite data.


2004 ◽  
Vol 10 (2) ◽  
pp. 157-166 ◽  
Author(s):  
George I. Hagstrom ◽  
Dehua H. Hang ◽  
Charles Ofria ◽  
Eric Torng

Phylogenetic trees group organisms by their ancestral relationships. There are a number of distinct algorithms used to reconstruct these trees from molecular sequence data, but different methods sometimes give conflicting results. Since there are few precisely known phylogenies, simulations are typically used to test the quality of reconstruction algorithms. These simulations randomly evolve strings of symbols to produce a tree, and then the algorithms are run with the tree leaves as inputs. Here we use Avida to test two widely used reconstruction methods, which gives us the chance to observe the effect of natural selection on tree reconstruction. We find that if the organisms undergo natural selection between branch points, the methods will be successful even on very large time scales. However, these algorithms often falter when selection is absent.


Author(s):  
Santosh Bhattacharyya

Three dimensional microscopic structures play an important role in the understanding of various biological and physiological phenomena. Structural details of neurons, such as the density, caliber and volumes of dendrites, are important in understanding physiological and pathological functioning of nervous systems. Even so, many of the widely used stains in biology and neurophysiology are absorbing stains, such as horseradish peroxidase (HRP), and yet most of the iterative, constrained 3D optical image reconstruction research has concentrated on fluorescence microscopy. It is clear that iterative, constrained 3D image reconstruction methodologies are needed for transmitted light brightfield (TLB) imaging as well. One of the difficulties in doing so, in the past, has been in determining the point spread function of the system.We have been developing several variations of iterative, constrained image reconstruction algorithms for TLB imaging. Some of our early testing with one of them was reported previously. These algorithms are based on a linearized model of TLB imaging.


2019 ◽  
pp. 23-36
Author(s):  
Mario. R. Cabrera

Formerly Cnemidophorus was thought to be the most speciose genus of Teiidae. This genus comprised four morphological groups that were later defined as four different genera, Ameivula, Aurivela, Cnemidophorus and Contomastix. The last appears as paraphyletic in a recent phylogenetic reconstruction based on morphology, but monophyletic in a reconstruction using molecular characters. Six species are allocated to Contomastix. One of them, C. lacertoides, having an extensive and disjunct geographic distribution in Argentina, Uruguay and Brazil. Preliminary analyses revealed morphological differences among its populations, suggesting that it is actually a complex of species. Here, we describe a new species corresponding to the Argentinian populations hitherto regarded as C. lacertoides, by integrating morphological and molecular evidence. Furthermore, we demonstrate that the presence of notched proximal margin of the tongue is a character that defines the genus Contomastix.


Author(s):  
Wenbing Yun ◽  
Steve Wang ◽  
David Scott ◽  
Kenneth W. Nill ◽  
Waleed S. Haddad

Abstract A high-resolution table-sized x-ray nanotomography (XRMT) tool has been constructed that shows the promise of nondestructively imaging the internal structure of a full IC stack with a spatial resolution better than 100 nm. Such a tool can be used to detect, localize, and characterize buried defects in the IC. By collecting a set of X-ray projections through the full IC (which may include tens of micrometers of silicon substrate and several layers of Cu interconnects) and applying tomographic reconstruction algorithms to these projections, a 3D volumetric reconstruction can be obtained, and analyzed for defects using 3D visualization software. XRMT is a powerful technique that will find use in failure analysis and IC process development, and may facilitate or supplant investigations using SEM, TEM, and FIB tools, which generally require destructive sample preparation and a vacuum environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hayer ◽  
Dirk Brandis ◽  
Alexander Immel ◽  
Julian Susat ◽  
Montserrat Torres-Oliva ◽  
...  

AbstractThe historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s—including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.


Sign in / Sign up

Export Citation Format

Share Document