Marine Natural Products with Bioactivity Against Neglected Tropical Diseases

2021 ◽  
pp. 209-251
Author(s):  
Sofia Kokkaliari ◽  
Nicole E. Avalon ◽  
Kristin Herrera ◽  
Ryan M. Young ◽  
Joshua Welsch ◽  
...  
2014 ◽  
Vol 20 (1) ◽  
pp. 82-91 ◽  
Author(s):  
F. Annang ◽  
G. Pérez-Moreno ◽  
R. García-Hernández ◽  
C. Cordon-Obras ◽  
J. Martín ◽  
...  

African trypanosomiasis, leishmaniasis, and Chagas disease are 3 neglected tropical diseases for which current therapeutic interventions are inadequate or toxic. There is an urgent need to find new lead compounds against these diseases. Most drug discovery strategies rely on high-throughput screening (HTS) of synthetic chemical libraries using phenotypic and target-based approaches. Combinatorial chemistry libraries contain hundreds of thousands of compounds; however, they lack the structural diversity required to find entirely novel chemotypes. Natural products, in contrast, are a highly underexplored pool of unique chemical diversity that can serve as excellent templates for the synthesis of novel, biologically active molecules. We report here a validated HTS platform for the screening of microbial extracts against the 3 diseases. We have used this platform in a pilot project to screen a subset (5976) of microbial extracts from the MEDINA Natural Products library. Tandem liquid chromatography–mass spectrometry showed that 48 extracts contain potentially new compounds that are currently undergoing de-replication for future isolation and characterization. Known active components included actinomycin D, bafilomycin B1, chromomycin A3, echinomycin, hygrolidin, and nonactins, among others. The report here is, to our knowledge, the first HTS of microbial natural product extracts against the above-mentioned kinetoplastid parasites.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Justus Amuche Nweze ◽  
Florence N. Mbaoji ◽  
Yan-Ming Li ◽  
Li-Yan Yang ◽  
Shu-Shi Huang ◽  
...  

Abstract Background Malaria and neglected communicable protozoa parasitic diseases, such as leishmaniasis, and trypanosomiasis, are among the otherwise called diseases for neglected communities, which are habitual in underprivileged populations in developing tropical and subtropical regions of Africa, Asia, and the Americas. Some of the currently available therapeutic drugs have some limitations such as toxicity and questionable efficacy and long treatment period, which have encouraged resistance. These have prompted many researchers to focus on finding new drugs that are safe, effective, and affordable from marine environments. The aim of this review was to show the diversity, structural scaffolds, in-vitro or in-vivo efficacy, and recent progress made in the discovery/isolation of marine natural products (MNPs) with potent bioactivity against malaria, leishmaniasis, and trypanosomiasis. Main text We searched PubMed and Google scholar using Boolean Operators (AND, OR, and NOT) and the combination of related terms for articles on marine natural products (MNPs) discovery published only in English language from January 2016 to June 2020. Twenty nine articles reported the isolation, identification and antiparasitic activity of the isolated compounds from marine environment. A total of 125 compounds were reported to have been isolated, out of which 45 were newly isolated compounds. These compounds were all isolated from bacteria, a fungus, sponges, algae, a bryozoan, cnidarians and soft corals. In recent years, great progress is being made on anti-malarial drug discovery from marine organisms with the isolation of these potent compounds. Comparably, some of these promising antikinetoplastid MNPs have potency better or similar to conventional drugs and could be developed as both antileishmanial and antitrypanosomal drugs. However, very few of these MNPs have a pharmaceutical destiny due to lack of the following: sustainable production of the bioactive compounds, standard efficient screening methods, knowledge of the mechanism of action, partnerships between researchers and pharmaceutical industries. Conclusions It is crystal clear that marine organisms are a rich source of antiparasitic compounds, such as alkaloids, terpenoids, peptides, polyketides, terpene, coumarins, steroids, fatty acid derivatives, and lactones. The current and future technological innovation in natural products drug discovery will bolster the drug armamentarium for malaria and neglected tropical diseases.


2019 ◽  
Vol 62 (3) ◽  
pp. 211-226 ◽  
Author(s):  
Yolanda Freile-Pelegrín ◽  
Deniz Tasdemir

Abstract Neglected tropical diseases (NTDs) are a group of diseases that are predominant in the poorest parts of the world affecting 1.4 billion people. The development of new drugs is urgently needed in order to combat these forgotten diseases. Natural products from marine organisms have been widely explored as a source of new bioactive molecules. However, despite their enormous potential in drug discovery, not even one seaweed-based molecule has entered pre-clinical testing for NTDs. This review gives an overview of the current status of algal natural products against NTDs. The list of compounds is by no means exhaustive, but covers the most important classes of active substances in marine algae against the most studied NTDs.


Author(s):  
Simone Kobe de Oliveira ◽  
Louise Domeneghini Chiaradia-Delatorre ◽  
Alessandra Mascarello ◽  
Beatriz Veleirinho ◽  
Fernanda Ramlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document