Solar Wind Sources and Their Variations over the Solar Cycle

Author(s):  
R. Schwenn
1995 ◽  
Vol 16 (9) ◽  
pp. 85-94 ◽  
Author(s):  
J.L. Phillips ◽  
S.J. Bame ◽  
W.C. Feldman ◽  
J.T. Gosling ◽  
C.M. Hammond ◽  
...  

2017 ◽  
Vol 44 (21) ◽  
Author(s):  
Robin Ramstad ◽  
Stas Barabash ◽  
Yoshifumi Futaana ◽  
Masatoshi Yamauchi ◽  
Hans Nilsson ◽  
...  

2015 ◽  
Vol 120 (8) ◽  
pp. 6152-6166 ◽  
Author(s):  
Z. Vörös ◽  
M. Leitner ◽  
Y. Narita ◽  
G. Consolini ◽  
P. Kovács ◽  
...  

2009 ◽  
Vol 5 (S264) ◽  
pp. 356-358 ◽  
Author(s):  
P. K. Manoharan

AbstractIn this paper, I present the results on large-scale evolution of density turbulence of solar wind in the inner heliosphere during 1985–2009. At a given distance from the Sun, the density turbulence is maximum around the maximum phase of the solar cycle and it reduces to ~70%, near the minimum phase. However, in the current minimum of solar activity, the level of turbulence has gradually decreased, starting from the year 2005, to the present level of ~30%. These results suggest that the source of solar wind changes globally, with the important implication that the supply of mass and energy from the Sun to the interplanetary space has significantly reduced in the present low level of activity.


2021 ◽  
Author(s):  
Benjamin L Alterman ◽  
Justin C Kasper ◽  
Robert J Leamon ◽  
Scott W McIntosh

Abstract We study the solar wind helium-to-hydrogen abundance's ( A He ) relationship to solar cycle onset. Using OMNI/Lo data, we show that A He increases prior to sunspot number (SSN) minima. We also identify a rapid depletion and recovery in A He that occurs directly prior to cycle onset. This A He Shutoff happens at approximately the same time across solar wind speeds ( v sw ) and the time between successive A He shutoffs is typically on the order of the corresponding solar cycle length. In contrast to A He 's v sw -dependent phase lag with respect to SSN (Alterman and Kasper, 2019), A He Shutoff's concurrence across v sw likely implies it is independent of solar wind acceleration and driven by a mechanism near or below the photosphere. Using Brightpoint (BP) measurements to provide context, we infer that this shutoff is likely related to the overlap of adjacent solar cycles and the equatorial flux cancelation of the older, extended solar cycle during solar minima.


Sign in / Sign up

Export Citation Format

Share Document