Assessing Challenges to Nuclear Power Plant Management in Five European Countries: Methods, Results and Lessons Learned

Author(s):  
Jari Kettunen ◽  
Bethan Jones ◽  
Teemu Reiman
2014 ◽  
Vol 543-547 ◽  
pp. 858-861
Author(s):  
Xiao Tian Liu ◽  
Yong Wang ◽  
Shao Rui Niu ◽  
Yan Zhao Zhang ◽  
Zhen Hao Shi ◽  
...  

This first step of ageing management in nuclear power plant is to determine the objectives and their priorities. The characteristics of the objectives are complex and highly nonlinear coupling. A fuzzy logic based screening and grading method have been developed in this research for the first time which combined the genetic ageing lessons learned and field expert experience to resolve the problem. The method have been approved of highly applicability and applied to ageing management in multiple nuclear power plants.


Author(s):  
Ladislav Vesely ◽  
Vaclav Dostal

Accident at Fukushima Dai-Ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at least slowed it down. Research into this accident is taking place all over the world. In this paper we present the findings of research on Fukushima nuclear power plant accident in relation to the Czech Republic. The paper focuses on the analysis of human performance during the accident. Lessons learned from the accident and main human errors are presented. First the brief factors affecting the human performance are discussed. They are followed by the short description of activities on units 1–3. The key human errors in the accident mitigation are then identified. On unit 1 the main error is wrong understanding and operation of isolation condenser. On unit 2 the main errors were unsuccessful depressurization with subsequent delay of coolant injection. On unit 3 the main error is the shutdown of high pressure cooling injection system without first confirming that different means of cooling are available. These errors lead to fuel damage. On unit 1 the fuel damage was probably impossible to prevent, however on unit 2 and 3 it could be probably prevented. The lessons learned for the Czech Republic were presented. They can be summarizes as follows: be sure that plant personnel can and knows how to monitor and operate the crucial plant components, be sure that the procedures on how to fulfill the critical safety functions are available in the symptomatic manner for situations when there is no power available at the plant, train personnel for these situations and have sufficient human resource available for these situations.


Author(s):  
Anthony Hechanova

The United Arab Emirates (UAE) is a developing affluent nation. The leaders of the UAE announced the pursuit of peaceful nuclear power in 2008 and by the end of the following year established its Nuclear Energy Program Implementing Organization (the Emirates Nuclear Energy Corporation (ENEC)), Federal Authority for Nuclear Regulation (FANR), and ordered four APR-1400 pressurized water reactors from the Korean Electric Power Company (KEPCO). Nuclear Engineering programs were initiated soon afterwards at Khalifa University for graduate students and the University of Sharjah for undergraduate students. The technical workforce including nuclear power plant local operators and chemistry and radiation protection personnel was established by ENEC and the Institute of Applied Technology as an inaugural program of Abu Dhabi Polytechnic (AD Poly) in 2011. This paper describes the development of the dual education and training program at AD Poly, the experience of the initial cohorts who conducted their training at the APR-1400 units at the Shin Kori Nuclear Power Plant in Korea, and the current program between the AD Poly Abu Dhabi campus and the new Barakah Nuclear Power Plant based on lessons learned from the earlier years.


Author(s):  
Xiaogang He ◽  
Shell Shortes

As a third-generation nuclear power plant design, construction of the Westinghouse AP1000 incorporates the characteristics of modular construction and the “Open-Top” lifting method, which results in many kinds of lifting operations, whose potential failure creates increased risk to key equipment and construction personnel. Lifting by its very nature is high risk. Based on traditional safety management practices utilized at the project, lift operation characteristics were analyzed, and procedures and processes developed to manage the risk. These developed aspects included: lifting operation procedures; a construction scheme review/approval process; work planning/risk mitigation; equipment inspections; personnel certification requirements; training; crew management; special inspections; lessons learned utilization; discipline management; emergency management; and safety culture development. The authors believe that the safety management approaches discussed in this paper can provide guidance in conducting safe lift operations in other nuclear power plant projects.


Author(s):  
T. Jelfs ◽  
M. Hayashi ◽  
A. Toft

Gross failure of certain components in nuclear power plant has the potential to lead to intolerable radiological consequences. For these components, UK regulatory expectations require that the probability of gross failure must be shown to be so low that it can be discounted, i.e. that it is incredible. For prospective vendors of nuclear power plant in the UK, with established designs, the demonstration of “incredibility of failure” can be an onerous requirement carrying a high burden of proof. Requesting parties may need to commit to supplementary manufacturing inspection, augmented material testing requirements, enhanced defect tolerance assessment, enhanced material specifications or even changes to design and manufacturing processes. A key part of this demonstration is the presentation of the structural integrity safety case argument. UK practice is to develop a safety case that incorporates the notion of ‘conceptual defence-in-depth’ to demonstrate the highest structural reliability. In support of recent Generic Design Assessment (GDA) submissions, significant experience has been gained in the development of so called “incredibility of failure” arguments. This paper presents an overview of some of the lessons learned relating to the identification of the highest reliability components, the development of the structural integrity safety arguments in the context of current GDA projects, and considers how the UK Technical Advisory Group on Structural Integrity (TAGSI) recommendations continue to be applied almost 15 years after their work was first published. The paper also reports the approach adopted by Horizon Nuclear Power and their partners to develop the structural integrity safety case in support of the GDA process to build the UK’s first commercial Boiling Water Reactor design.


Author(s):  
Tadashi Narabayashi

On March 11, 2011, Tokyo Electric Power Company’s Fukushima Daiichi Nuclear Power Plant (NPP) was hit by a tsunami caused by the Tohoku-Pacific Ocean Earthquake, resulting in nuclear accidents in Units #1 to #4. With the aim of improving the safety of NPPs worldwide, we summarize the lessons that have been learned following a thorough analysis of the event and make specific proposals for improving the safety of such facilities. The author has been involved in investigating the causes of the accidents and developing countermeasures for other NPPs in Japan as a member of the Committee for the Investigation of Nuclear Safety of the Atomic Energy Society of Japan [1], an advisory meeting member of NISA with regard to technical lessons learned from the Fukushima Daiichi NPP accidents, and a Safety Evaluation Member of NISA for the other NPPs in Japan [2].


Author(s):  
Gurjendra S. Bedi

The U.S. Nuclear Regulatory Commission (NRC) staff issued Revision 2 to NUREG-1482, “Guidelines for Inservice Testing at Nuclear Power Plant,” to assist the nuclear power plant licensees in establishing a basic understanding of the regulatory basis for pump and valve inservice testing (IST) programs and dynamic restraints (snubbers) inservice examination and testing programs. Since the Revision 1 issuance of NUREG-1482, certain tests and measurements required by earlier editions and addenda of the American Society of Mechanical Engineers (ASME) Code for Operation and Maintenance of Nuclear Power Plants (OM Code) have been clarified, updated, revised or eliminated. The revision to NUREG-1482 incorporates and addresses those changes, and includes the IST programs guidelines related to new reactors. The revised guidance incorporates lessons learned and experience gained since the last issue. This paper provides an overview of the contents of the NUREG-1482 and those changes and discusses how they affect NRC guidance on implementing pump and valve inservice testing (IST) programs. For the first time, this revision added dynamic restraint (snubber) inservice examination and testing program guidelines along with pump and valve IST programs. This paper highlights important changes to NUREG-1482, but is not intended to provide a complete record of all changes to the document. The NRC intends to continue to develop and improve its guidance on IST methods through active participation in the ASME OM Code consensus process, interactions with various technical organizations, user groups, and through periodic updates of NRC-published guidance and issuance of generic communications as the need arises. Revision 2 to NUREG-1482 incorporates regulatory guidance applicable to the 2004 Edition including 2005 and 2006 Addenda to the ASME OM Code. Revision 0 and Revision 1 to NUREG-1482 are still valid and may continue to be used by those licensees who have not been required to update their IST program to the 2004 Edition including the 2005 and 2006 Addenda (or later Edition) of the ASME OM Code. The guidance provided in many sections herein may be used for requesting relief from or alternatives to ASME OM Code requirements. However, licensees may also request relief or authorization of an alternative that is not in conformance with the guidance. In evaluating such requested relief or alternatives, the NRC uses the guidelines/recommendations of the NUREG, where applicable. The guidelines and recommendations provided in this NUREG and its Appendix A do not supersede the regulatory requirements specified in Title 10 of the Code of Federal Regulations (10 CFR) 10 CFR 50.55a, “Codes and standards”. Further, this NUREG does not authorize the use of alternatives to, grant relief from, the ASME OM Code requirements for inservice testing of pumps and valves, or inservice examination and testing of dynamic restraints (snubbers), incorporated by reference in 10 CFR 50.55a. Paper published with permission.


Sign in / Sign up

Export Citation Format

Share Document