scholarly journals Isolation, Characterization, and Culture of Intestinal Intraepithelial Lymphocytes

Author(s):  
Olivia Jane James ◽  
Maud Vandereyken ◽  
Mahima Swamy
1992 ◽  
Vol 22 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Hiroaki Takimoto ◽  
Takao Nakamura ◽  
Makoto Takeuchi ◽  
Yukiko Sumi ◽  
Toshiyuki Tanaka ◽  
...  

2000 ◽  
Vol 24 (8) ◽  
pp. 783-795 ◽  
Author(s):  
Michael D Eisenbraun ◽  
R.Lee Mosley ◽  
Daniel H Teitelbaum ◽  
Richard A Miller

Nature ◽  
1989 ◽  
Vol 339 (6227) ◽  
pp. 712-714 ◽  
Author(s):  
Yohtaroh Takagaki ◽  
Amy DeCloux ◽  
Marc Bonneville ◽  
Susumu Tonegawa

2006 ◽  
Vol 74 (9) ◽  
pp. 5292-5301 ◽  
Author(s):  
Kyoko Inagaki-Ohara ◽  
Fitriya Nurannisa Dewi ◽  
Hajime Hisaeda ◽  
Adrian L. Smith ◽  
Fumiko Jimi ◽  
...  

ABSTRACT Eimeria spp. are intracellular protozoa that infect intestinal epithelia of most vertebrates, causing coccidiosis. Intestinal intraepithelial lymphocytes (IEL) that reside at the basolateral site of epithelial cells (EC) have immunoregulatory and immunoprotective roles against Eimeria spp. infection. However, it remains unknown how IEL are involved in the regulation of epithelial barrier during Eimeria sp. infection. Here, we demonstrated two distinct roles of IEL against infection with Eimeria vermiformis, a murine pathogen: production of cytokines to induce protective immunity and expression of junctional molecules to preserve epithelial barrier. The number of IEL markedly increased when oocyst production reached a peak. During infection, IEL increased production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and decreased transforming growth factor β (TGF-β) production. Addition of IFN-γ and TNF-α or supernatants obtained from cultured IEL from E. vermiformis-infected mice reduced transepithelial electrical resistance (TER) in a confluent CMT93 cell monolayer, a murine intestine-derived epithelial line, but antibodies against these cytokines suppressed the decline of TER. Moreover, TGF-β attenuated the damage of epithelial monolayer and changes in TER caused by IFN-γ and TNF-α. The expression of junctional molecules by EC was decreased when IEL produced a high level of IFN-γ and TNF-α and a low level of TGF-β in E. vermiformis-infected mice. Interestingly, IEL constantly expressed junctional molecules and a coculture of EC with IEL increased TER. These results suggest that IEL play important multifunctional roles not only in protection of the epithelium against E. vermiformis-induced change by cytokine production but also in direct interaction with the epithelial barrier when intra-EC junctions are down-regulated.


1991 ◽  
Vol 10 (3-4) ◽  
pp. 302-305 ◽  
Author(s):  
Sabine Sarnacki ◽  
Bernadette Bègue ◽  
Anne Jarry ◽  
Nadine Cerf-Bensussan

1998 ◽  
Vol 66 (12) ◽  
pp. 5677-5683 ◽  
Author(s):  
Kenji Hirose ◽  
Hirohiko Suzuki ◽  
Hitoshi Nishimura ◽  
Akio Mitani ◽  
Junji Washizu ◽  
...  

ABSTRACT Exogenous interleukin-15 (IL-15) stimulates intestinal intraepithelial lymphocytes (i-IEL) from mice to proliferate and produce gamma interferon (IFN-γ) in vitro. To determine whether endogenous IL-15 is involved in activation of i-IEL during intestinal infection, we examined IL-15 synthesis by intestinal epithelial cells (i-EC) after infection with Listeria monocytogenes in rats. In in vitro experiments, invasion of L. monocytogenes into IEC-6 cells, a rat small intestine epithelial cell line, evidently induced IL-15 mRNA expression coincident with nuclear factor κB (NF-κB) activation, which is essential for IL-15 gene expression. IL-15 synthesis was detected in rat i-EC on day 1 after an oral inoculation of L. monocytogenes in vivo. The numbers of T-cell receptor (TCR) γδ+ T cells, NKR.P1+cells, and CD3+ CD8+ αα cells in i-IEL were significantly increased on day 1 after oral infection. The i-IEL from infected rats produced larger amounts of IFN-γ upon stimulation with immobilized anti-TCR γδ or anti-NKR.P1 monoclonal antibodies. These results suggest that IL-15 produced by i-EC may stimulate significant fractions of i-IEL to produce IFN-γ at an early phase of oral infection with L. monocytogenes.


Sign in / Sign up

Export Citation Format

Share Document