Gravitational Instantons and Degenerations of Ricci-flat Metrics on the K3 Surface

Author(s):  
Lorenzo Foscolo
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Liang Ma ◽  
H. Lü

Abstract We establish an explicit correspondence of Einstein gravity on the squashed spheres that are the U(1) bundles over ℂℙm to the Kaluza-Klein AdS gravity on the tori. This allows us to map the Ricci-flat Kerr metrics in odd dimensions with all equal angular momenta to charged Kaluza-Klein AdS black holes that can be lifted to become singly rotating M-branes and D3-branes. Furthermore, we find maps between Ricci-flat gravitational instantons to the AdS domain walls. In particular the supersymmetric bolt instantons correspond to domain walls that can be interpreted as distributed M-branes and D3-branes, whilst the non-supersymmetric Taub-NUT solutions yield new domain walls that can be lifted to become solutions in M-theory or type IIB supergravity. The correspondence also inspires us to obtain a new superpotential in the Kaluza-Klein AdS gravity in four dimensions.


2021 ◽  
Vol 143 (5) ◽  
pp. 1431-1462
Author(s):  
Simion Filip ◽  
Valentino Tosatti
Keyword(s):  

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Soheyla Feyzbakhsh ◽  
Chunyi Li

AbstractLet (X, H) be a polarized K3 surface with $$\mathrm {Pic}(X) = \mathbb {Z}H$$ Pic ( X ) = Z H , and let $$C\in |H|$$ C ∈ | H | be a smooth curve of genus g. We give an upper bound on the dimension of global sections of a semistable vector bundle on C. This allows us to compute the higher rank Clifford indices of C with high genus. In particular, when $$g\ge r^2\ge 4$$ g ≥ r 2 ≥ 4 , the rank r Clifford index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X corresponding to line bundles on the curve C. This is a generalization of the result by Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also apply the same method to the projective plane and show that the rank r Clifford index of a degree $$d(\ge 5)$$ d ( ≥ 5 ) smooth plane curve is $$d-4$$ d - 4 , which is the same as the Clifford index of the curve.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jin Chen ◽  
Chao-Hsiang Sheu ◽  
Mikhail Shifman ◽  
Gianni Tallarita ◽  
Alexei Yung

Abstract We study two-dimensional weighted $$ \mathcal{N} $$ N = (2) supersymmetric ℂℙ models with the goal of exploring their infrared (IR) limit. 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) are simplified versions of world-sheet theories on non-Abelian strings in four-dimensional $$ \mathcal{N} $$ N = 2 QCD. In the gauged linear sigma model (GLSM) formulation, 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) has N charges +1 and $$ \tilde{N} $$ N ˜ charges −1 fields. As well-known, at $$ \tilde{N} $$ N ˜ = N this GLSM is conformal. Its target space is believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case, then the Calabi-Yau space is a conifold. On the other hand, in the non-linear sigma model (NLSM) formulation the model has ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat. We address this puzzle by studying the renormalization group (RG) flow of the model. We show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the known metric of the resolved conifold. We also study a close relative of the 𝕎ℂℙ model — the so called zn model — which in actuality represents the world sheet theory on a non-Abelian semilocal string and show that this zn model has similar RG properties.


1981 ◽  
Vol 82 ◽  
pp. 1-26
Author(s):  
Daniel Comenetz

Let X be a nonsingular algebraic K3 surface carrying a nonsingular hyperelliptic curve of genus 3 and no rational curves. Our purpose is to study two algebraic deformations of X, viz. one specialization and one generalization. We assume the characteristic ≠ 2. The generalization of X is a nonsingular quartic surface Q in P3 : we wish to show in § 1 that there is an irreducible algebraic family of surfaces over the affine line, in which X is a member and in which Q is a general member. The specialization of X is a surface Y having a birational model which is a ramified double cover of a quadric cone in P3.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Fernando Marchesano ◽  
Eran Palti ◽  
Joan Quirant ◽  
Alessandro Tomasiello

Abstract In this work we study ten-dimensional solutions to type IIA string theory of the form AdS4 × X6 which contain orientifold planes and preserve $$ \mathcal{N} $$ N = 1 supersymmetry. In particular, we consider solutions which exhibit some key features of the four-dimensional DGKT proposal for compactifications on Calabi-Yau manifolds with fluxes, and in this sense may be considered their ten-dimensional uplifts. We focus on the supersymmetry equations and Bianchi identities, and find solutions to these that are valid at the two-derivative level and at first order in an expansion parameter which is related to the AdS cosmological constant. This family of solutions is such that the background metric is deformed from the Ricci-flat one to one exhibiting SU(3) × SU(3)-structure, and dilaton gradients and warp factors are induced.


Sign in / Sign up

Export Citation Format

Share Document