Identification of Transposable Elements in Schistosoma mansoni

Author(s):  
Gisele S. Philippsen ◽  
Ricardo DeMarco
2021 ◽  
Vol 6 (3) ◽  
pp. 126
Author(s):  
Gisele Strieder Philippsen

Transposable elements (TEs) are DNA sequences able to transpose within the host genome and, consequently, influence the dynamics of evolution in the species. Among the possible effects, TEs insertions may alter the expression and coding patterns of genes, leading to genomic innovations. Gene-duplication events, resulting from DNA segmental duplication induced by TEs transposition, constitute another important mechanism that contributes to the plasticity of genomes. This review aims to cover the current knowledge regarding TEs in the genome of the parasite Schistosoma mansoni, an agent of schistosomiasis—a neglected tropical disease affecting at least 250 million people worldwide. In this context, the literature concerning TEs description and TEs impact on the genomic architecture for S. mansoni was revisited, displaying evidence of TEs influence on schistosome speciation—mediated by bursts of transposition—and in gene-duplication events related to schistosome–host coevolution processes, as well several instances of TEs contribution into the coding sequences of genes. These findings indicate the relevant role of TEs in the evolution of the S. mansoni genome.


Genetica ◽  
2015 ◽  
Vol 143 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Bhagya K. Wijayawardena ◽  
J. Andrew DeWoody ◽  
Dennis J. Minchella

Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1124-1133 ◽  
Author(s):  
DANIELE S. JACINTO ◽  
HELOISA DOS SANTOS MUNIZ ◽  
THIAGO M. VENANCIO ◽  
R. ALAN WILSON ◽  
SERGIO VERJOVSKI-ALMEIDA ◽  
...  

SUMMARYTransposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.


Author(s):  
Betty Ruth Jones ◽  
Steve Chi-Tang Pan

INTRODUCTION: Schistosomiasis has been described as “one of the most devastating diseases of mankind, second only to malaria in its deleterious effects on the social and economic development of populations in many warm areas of the world.” The disease is worldwide and is probably spreading faster and becoming more intense than the overall research efforts designed to provide the basis for countering it. Moreover, there are indications that the development of water resources and the demands for increasing cultivation and food in developing countries may prevent adequate control of the disease and thus the number of infections are increasing.Our knowledge of the basic biology of the parasites causing the disease is far from adequate. Such knowledge is essential if we are to develop a rational approach to the effective control of human schistosomiasis. The miracidium is the first infective stage in the complex life cycle of schistosomes. The future of the entire life cycle depends on the capacity and ability of this organism to locate and enter a suitable snail host for further development, Little is known about the nervous system of the miracidium of Schistosoma mansoni and of other trematodes. Studies indicate that miracidia contain a well developed and complex nervous system that may aid the larvae in locating and entering a susceptible snail host (Wilson, 1970; Brooker, 1972; Chernin, 1974; Pan, 1980; Mehlhorn, 1988; and Jones, 1987-1988).


2001 ◽  
Vol 25 (2) ◽  
pp. 169-179 ◽  
Author(s):  
Kime Turcotte ◽  
Sujatha Srinivasan ◽  
Thomas Bureau

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
AIO Salloum ◽  
R Lucarini ◽  
MG Tozatti ◽  
J Medeiros ◽  
MLA Silva ◽  
...  

2019 ◽  
Author(s):  
M Roderfeld ◽  
J Lichtenberger ◽  
F Wolters ◽  
T Quack ◽  
CG Grevelding ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document