Curupira-1 and Curupira-2, two novel Mutator-like DNA transposons from the genomes of human parasites Schistosoma mansoni and Schistosoma japonicum

Parasitology ◽  
2011 ◽  
Vol 138 (9) ◽  
pp. 1124-1133 ◽  
Author(s):  
DANIELE S. JACINTO ◽  
HELOISA DOS SANTOS MUNIZ ◽  
THIAGO M. VENANCIO ◽  
R. ALAN WILSON ◽  
SERGIO VERJOVSKI-ALMEIDA ◽  
...  

SUMMARYTransposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.

2002 ◽  
Vol 68 (5) ◽  
pp. 2307-2315 ◽  
Author(s):  
Masahiro Sota ◽  
Masahiro Endo ◽  
Keiji Nitta ◽  
Haruhiko Kawasaki ◽  
Masataka Tsuda

ABSTRACT The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ann A. Ferguson ◽  
Ning Jiang

Mutator-like transposable elements (MULEs) are widespread in plants and the majority have long terminal inverted repeats (TIRs), which distinguish them from other DNA transposons. It is known that the long TIRs ofMutatorelements harbor transposase binding sites and promoters for transcription, indicating that the TIR sequence is critical for transposition and for expression of sequences between the TIRs. Here, we report the presence of MULEs with multiple TIRs mostly located in tandem. These elements are detected in the genomes of maize, tomato, rice, andArabidopsis. Some of these elements are present in multiple copies, suggesting their mobility. For those elements that have amplified, sequence conservation was observed for both of the tandem TIRs. For one MULE family carrying a gene fragment, the elements with tandem TIRs are more prevalent than their counterparts with a single TIR. The successful amplification of this particular MULE demonstrates that MULEs with tandem TIRs are functional in both transposition and duplication of gene sequences.


2017 ◽  
Vol 69 (2) ◽  
pp. 353-360 ◽  
Author(s):  
Salma Djebbi ◽  
Amara Ben ◽  
Hanem Makni ◽  
Mohamed Makni ◽  
Maha Mezghani-Khemakhem

Mariner-like elements (MLEs) are Class-II transposons that are widely present in diverse organisms and encode a D,D34D transposase motif. MLE sequences from two coleopteran species, Bruchuspisorum and B. rufimanus were obtained using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana subfamily as primer. The characterized elements were between 1073 and 1302 bp in length and are likely to be inactive, based on the presence of multiple stop codons and/or frameshifts. A single consensus of MLE was detected in B. pisorum and was named Bpmar1. This element exhibited several conserved amino acid blocks as well as the specific D,D(34)D signature. As for B. rufimanus, two MLE consensuses, designated Brmar1 and Brmar2, were isolated, both containing deletions overlapping the internal region of the transposase. Structural and phylogenetic analysis of these sequences suggested a relatively recent origin of Bpmar1 versus a more ancient invasion of Brmar1 and Brmar2 in their respective host genomes. Given that MLEs are potential mediators of insect resistance and have been used as vectors to transfer genes into host genomes, the MLEs characterized in this study will have valuable implications for selecting appropriate transposable elements in transgenesis.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 845-854 ◽  
Author(s):  
M M Qin ◽  
D S Robertson ◽  
A H Ellingboe

Abstract The identification of the autonomous or transposase-encoding element of the Mutator (Mu) transposable element system of maize is necessary to the characterization of the system. We reported previously that a transcript homologous to the internal region of the MuA element is associated with activity of the Mutator system. We describe here the cloning of another Mu element, designated MuA2, that cosegregates with Mutator activity as assayed by somatic instability of the a1-Mum2 allele. The MuA2 element has features typical of the transposable elements of the Mutator family, including the 210-bp terminal inverted repeats. Several lines of evidence suggest that MuA2 is an autonomous or transposase-encoding element of the Mu family: (1) MuA2 cosegregates with a genetically defined element that regulates somatic mutability of the a1-Mum2 allele; (2) MuA2 is hypomethylated while most other MuA2-hybridizing sequences in the genome are extensively methylated; (3) the increase of the copy number of MuA2 is concomitant with the increase of regulator elements; (4) MuA2-like elements are found in Mutator lines but not in non-Mutator inbreds. We propose that autonomous or transposase-encoding elements of the Mu family may be structurally conserved and MuA2-like.


1989 ◽  
Vol 9 (7) ◽  
pp. 3018-3027 ◽  
Author(s):  
J E Garrett ◽  
D S Knutzon ◽  
D Carroll

Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit.


Genetics ◽  
1991 ◽  
Vol 129 (1) ◽  
pp. 261-270 ◽  
Author(s):  
P Chomet ◽  
D Lisch ◽  
K J Hardeman ◽  
V L Chandler ◽  
M Freeling

Abstract The Mutator system of maize consists of more than eight different classes of transposable elements each of which can be found in multiple copies. All Mu elements share the approximately 220-bp terminal inverted repeats, whereas each distinct element class is defined by its unique internal sequences. The regulation of instability of this system has been difficult to elucidate due to its multigenic inheritance. Here we present genetic experiments which demonstrate that there is a single locus, MuR1, which can regulate the transposition of Mu1 elements. We describe the cloning of members of a novel class of Mu elements, MuR, and demonstrate that a member of the class is the regulator of Mutator activity, MuR1. This conclusion is based on several criteria: MuR1 activity and a MuR-homologous restriction fragment cosegregate; when MuR1 undergoes a duplicative transposition, an additional MuR restriction fragment is observed, and MuR1 activity and the cosegregating MuR fragment are simultaneously lost within clonal somatic sectors. In addition, the MuR element hybridizes to transcripts in plants with Mutator activity. Our genetic experiments demonstrate that the MuR1 transposon is necessary to specify Mutator activity in our lines.


2019 ◽  
Author(s):  
Eliza C. Martin ◽  
Celia Vicari ◽  
Louis Tsakou-Ngouafo ◽  
Pierre Pontarotti ◽  
Andrei J. Petrescu ◽  
...  

Abstract Background V(D)J recombination is essential for adaptive immunity in jawed vertebrates and is initiated by the RAG1-RAG2 endonuclease. The RAG1 and RAG2 genes are thought to have evolved from a RAGL (RAG-like) transposon containing convergently-oriented RAG1-like (RAG1L) and RAG2-like (RAG2L) genes. Elements resembling this presumptive evolutionary precursor have thus far only been detected convincingly in deuterostomes, leading to the model that the RAGL transposon first appeared in an early deuterostome. Results We have identified numerous RAGL transposons in the genomes of protostomes, including oysters and mussels (phylum Mollusca) and a ribbon worm (phylum Nemertea), and in the genomes of several cnidarians. Phylogenetic analyses indicate that the RAGL transposon family evolved in a vertical manner within the Bilateria clade. Many of the RAGL transposons identified in protostomes are intact elements containing convergently oriented RAG1L and RAG2L genes flanked by terminal inverted repeats (TIRs) and target site duplications with striking similarities with the corresponding elements in deuterostomes. In addition, protostome genomes contain numerous intact RAG1L-RAG2L adjacent gene pairs that lack detectable flanking TIRs. Domains and critical active site and structural amino acids needed for endonuclease and transposase activity are present and conserved in many of the predicted RAG1L and RAG2L proteins encoded in protostome genomes. Conclusions Active RAGL transposons were present in multiple protostome lineages and were transmitted vertically during protostome evolution. It appears that the RAGL transposon family was broadly active during bilaterian evolution, undergoing multiple duplication and loss/fossilization events, with the RAGL genes that persist in present day protostomes perhaps constituting both active RAGL transposons and domesticated RAGL genes. Our findings indicate that the RAGL transposon arose earlier in evolution than previously thought, either in an early bilaterian or prior to the divergence of bilaterians and non-bilaterians, and alter our understanding of the evolutionary history of this important transposon family.


Sign in / Sign up

Export Citation Format

Share Document