Optogenetic Stimulation of the Central Amygdala Using Channelrhodopsin

Author(s):  
Anna S. Knes ◽  
Charlotte M. Freeland ◽  
Mike J. F. Robinson
2018 ◽  
Author(s):  
María Luisa Torruella-Suárez ◽  
Jessica R. Vandenberg ◽  
Elizabeth S. Cogan ◽  
Gregory J. Tipton ◽  
Adonay Teklezghi ◽  
...  

AbstractThe central nucleus of the amygdala plays a significant role in alcohol use and other affective disorders; however, the genetically-defined neuronal subtypes and their projections that govern these behaviors are not well known. Here we show that neurotensin neurons in the central nucleus of the amygdala of male mice are activated by in vivo ethanol consumption and that genetic ablation of these neurons decreases ethanol consumption and preference in non-ethanol dependent animals. This ablation did not impact preference for sucrose, saccharin, or quinine. We found that the most robust projection of the central amygdala neurotensin neurons was to the parabrachial nucleus, a brain region known to be important in feeding behaviors, conditioned taste aversion, and alarm. Optogenetic stimulation of projections from these neurons to the parabrachial nucleus is reinforcing, and increases ethanol drinking as well as consumption of sucrose and saccharin solutions. These data suggest that this central amygdala to parabrachial nucleus projection influences the expression of reward-related phenotypes and is a novel circuit promoting consumption of ethanol and palatable fluids.


Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


2021 ◽  
Author(s):  
R Patejdl ◽  
M Vogt ◽  
B Schulz ◽  
A Wagdi ◽  
J Lebert ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6537) ◽  
pp. eabf4740
Author(s):  
K. Schmack ◽  
M. Bosc ◽  
T. Ott ◽  
J. F. Sturgill ◽  
A. Kepecs

Hallucinations, a central symptom of psychotic disorders, are attributed to excessive dopamine in the brain. However, the neural circuit mechanisms by which dopamine produces hallucinations remain elusive, largely because hallucinations have been challenging to study in model organisms. We developed a task to quantify hallucination-like perception in mice. Hallucination-like percepts, defined as high-confidence false detections, increased after hallucination-related manipulations in mice and correlated with self-reported hallucinations in humans. Hallucination-like percepts were preceded by elevated striatal dopamine levels, could be induced by optogenetic stimulation of mesostriatal dopamine neurons, and could be reversed by the antipsychotic drug haloperidol. These findings reveal a causal role for dopamine-dependent striatal circuits in hallucination-like perception and open new avenues to develop circuit-based treatments for psychotic disorders.


Sign in / Sign up

Export Citation Format

Share Document