Tsunami Hazard and Risk Assessment on the Global Scale

Author(s):  
F. Løvholt ◽  
J. Griffin ◽  
M. A. Salgado-Gálvez
2020 ◽  
Vol 162 ◽  
pp. 103735 ◽  
Author(s):  
Hany M. Hassan ◽  
C. Frischknecht ◽  
Mohamed N. ElGabry ◽  
Hesham Hussein ◽  
Mona ElWazir

2019 ◽  
Vol 19 (11) ◽  
pp. 2619-2634
Author(s):  
Yo Fukutani ◽  
Shuji Moriguchi ◽  
Kenjiro Terada ◽  
Takuma Kotani ◽  
Yu Otake ◽  
...  

Abstract. It is necessary to evaluate aggregate damage probability to multiple buildings when performing probabilistic risk assessment for the buildings. The purpose of this study is to demonstrate a method of tsunami hazard and risk assessment for two buildings far away from each other, using copulas of tsunami hazards that consider the nonlinear spatial correlation of tsunami wave heights. First, we simulated the wave heights considering uncertainty by varying the slip amount and fault depths. The frequency distributions of the wave heights were evaluated via the response surface method. Based on the distributions and numerically simulated wave heights, we estimated the optimal copula via maximum likelihood estimation. Subsequently, we evaluated the joint distributions of the wave heights and the aggregate damage probabilities via the marginal distributions and the estimated copulas. As a result, the aggregate damage probability of the 99th percentile value was approximately 1.0 % higher and the maximum value was approximately 3.0 % higher while considering the wave height correlation. We clearly showed the usefulness of copula modeling considering the wave height correlation in evaluating the probabilistic risk of multiple buildings. We only demonstrated the risk evaluation method for two buildings, but the effect of the wave height correlation on the results is expected to increase if more points are targeted.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 158
Author(s):  
Didier Hantz ◽  
Jordi Corominas ◽  
Giovanni B. Crosta ◽  
Michel Jaboyedoff

There is an increasing need for quantitative rockfall hazard and risk assessment that requires a precise definition of the terms and concepts used for this particular type of landslide. This paper suggests using terms that appear to be the most logic and explicit as possible and describes methods to derive some of the main hazards and risk descriptors. The terms and concepts presented concern the rockfall process (failure, propagation, fragmentation, modelling) and the hazard and risk descriptors, distinguishing the cases of localized and diffuse hazards. For a localized hazard, the failure probability of the considered rock compartment in a given period of time has to be assessed, and the probability for a given element at risk to be impacted with a given energy must be derived combining the failure probability, the reach probability, and the exposure of the element. For a diffuse hazard that is characterized by a failure frequency, the number of rockfalls reaching the element at risk per unit of time and with a given energy (passage frequency) can be derived. This frequency is relevant for risk assessment when the element at risk can be damaged several times. If it is not replaced, the probability that it is impacted by at least one rockfall is more relevant.


2021 ◽  
pp. 112334
Author(s):  
Serena Santonicola ◽  
Stefania Albrizio ◽  
Maria Carmela Ferrante ◽  
Mercogliano Raffaelina

Chemosphere ◽  
1997 ◽  
Vol 34 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Martin Murín ◽  
Juraj Gavora ◽  
Iveta Drastichová ◽  
Elena Dušková ◽  
Torben Madsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document