Methods for Small-Angle Scattering Measurements on Peptiplexes of DNA with Cell-Penetrating Peptides

2021 ◽  
pp. 181-196
Author(s):  
Emerson Rodrigo da Silva ◽  
Lucas Rodrigues de Mello ◽  
Ian William Hamley
1977 ◽  
Vol 10 (1) ◽  
pp. 37-44 ◽  
Author(s):  
C. Cabos ◽  
P. Delord ◽  
J. Rouviere

The structure of micellar solutions is determined from X-ray small-angle scattering measurements on an absolute scale. The most probable structure is chosen by comparison with spherical cylindrical and lamellar models. This method is applied to two-component micelles and it is possible to follow the variation of micellar dimensions when the concentration of each component is varying.


2017 ◽  
Vol 73 (a1) ◽  
pp. a101-a101
Author(s):  
Andrew J. Allen ◽  
Fan Zhang ◽  
Jan Ilavsky ◽  
Pete R. Jemian

1989 ◽  
Vol 174 ◽  
Author(s):  
D. L. Worcester ◽  
T. J. Michalski ◽  
M. K. Bowman ◽  
J. J. Katz

AbstractNeutron small-angle scattering measurements of several different chlorophylls hydrated in deuterated octane-toluene mixtures show that long, hollow cylinders of aggregated chlorophyll are formed. Clear secondary maxima are present in the scattering, and the cylinder diameters are well determined, but depend on the type of chlorophyll. Chlorophyll-a and Bacteriochlorophyll-a were particularly studied, and several samples of each have been measured. Other chlorophylls have also been studied. The results provide strong evidence that chlorophyll cylinders are only certain sizes, with diameters very nearly in the ratio of small integers. Thus, the cylinder diameters appear to be quantized. Neutron scattering results that further test this quantization property are presented here, together with a proposal for the stereochemical features of chlorophyll aggregation which account for the diameter quantization.


1997 ◽  
Vol 30 (5) ◽  
pp. 872-876 ◽  
Author(s):  
H. Amenitsch ◽  
S. Bernstorff ◽  
M. Kriechbaum ◽  
D. Lombardo ◽  
H. Mio ◽  
...  

A new beamline for small-angle X-ray scattering (SAXS) has recently been constructed and is presently under final commissioning at the 2 GeV storage ring ELETTRA. It has been designed specifically for time-resolved studies of non-crystalline and fibrous materials and has been optimized for small-angle scattering measurements. The beamline operates with a SAXS resolution between 10 and about 1400 Å in d spacing (at 8 keV) and has been optimized with respect to high flux at the sample [of the order of 1013 photons s−1 for 8 keV photons (2 GeV, 400 mA)]. Soon it will be possible to perform simultaneously wide-angle diffraction measurements in the d-spacing range 1.2–8 Å (at 8 keV). In order to allow time-resolved (resolution ~1 ms) small-angle scattering measurements, a high-power 57-pole wiggler is used as the beamline source. From its beam, one of three discrete energies, 5.4, 8 and 16 keV, can be selected with a double-crystal monochromator, which contains three pairs of asymmetrically cut plane Si(111) crystals. Downstream, the beam is focused horizontally and vertically by a toroidal mirror. Commissioning tests of this new SAXS beamline showed that all design parameters have been realized.


hamon ◽  
2020 ◽  
Vol 30 (2) ◽  
pp. 102-105
Author(s):  
Tomoki Nishimura ◽  
Kazunari Akiyoshi ◽  
Yurina Sekine

Sign in / Sign up

Export Citation Format

Share Document