An In Vitro System to Model the Establishment and Reactivation of HIV-1 Latency in Primary Human CD4+ T Cells

Author(s):  
Rui Li ◽  
Fabio Romerio
Keyword(s):  
T Cells ◽  
2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


Cytokine ◽  
2010 ◽  
Vol 52 (1-2) ◽  
pp. 91
Author(s):  
Lorenzo Zaffiri ◽  
Gabriella D’Ettorre ◽  
Mauro Andreotti ◽  
Cecilia Rizza ◽  
Sonia Marcellini ◽  
...  

2017 ◽  
Vol 32 (6) ◽  
pp. 485-494
Author(s):  
Ting Tu ◽  
Jianbo Zhan ◽  
Danlei Mou ◽  
Wei Li ◽  
Bin Su ◽  
...  

Author(s):  
Takenori Yagi ◽  
Akira Sugimoto ◽  
Masato Tanaka ◽  
Shigekazu Nagata ◽  
Sachiko Yasuda ◽  
...  
Keyword(s):  
T Cells ◽  

Cytokine ◽  
2009 ◽  
Vol 48 (1-2) ◽  
pp. 61
Author(s):  
Shay Matalon ◽  
Brent E. Palmer ◽  
Marcel F. Nold ◽  
Antonio Furlan ◽  
Gianluca Fossati ◽  
...  

2004 ◽  
Vol 200 (6) ◽  
pp. 701-712 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Daniel E. Kaufmann ◽  
Xu G. Yu ◽  
Stanley K. Mui ◽  
Marylyn M. Addo ◽  
...  

Virus-specific CD8+ T cells are associated with declining viremia in acute human immunodeficiency virus (HIV)1 infection, but do not correlate with control of viremia in chronic infection, suggesting a progressive functional defect not measured by interferon γ assays presently used. Here, we demonstrate that HIV-1–specific CD8+ T cells proliferate rapidly upon encounter with cognate antigen in acute infection, but lose this capacity with ongoing viral replication. This functional defect can be induced in vitro by depletion of CD4+ T cells or addition of interleukin 2–neutralizing antibodies, and can be corrected in chronic infection in vitro by addition of autologous CD4+ T cells isolated during acute infection and in vivo by vaccine-mediated induction of HIV-1–specific CD4+ T helper cell responses. These data demonstrate a loss of HIV-1–specific CD8+ T cell function that not only correlates with progressive infection, but also can be restored in chronic infection by augmentation of HIV-1–specific T helper cell function. This identification of a reversible defect in cell-mediated immunity in chronic HIV-1 infection has important implications for immunotherapeutic interventions.


2002 ◽  
Vol 76 (21) ◽  
pp. 11033-11041 ◽  
Author(s):  
Lawrence Fong ◽  
Manuela Mengozzi ◽  
Nancy W. Abbey ◽  
Brian G. Herndier ◽  
Edgar G. Engleman

ABSTRACT Immature plasmacytoid dendritic cells are the principal alpha interferon-producing cells (IPC), responsible for primary antiviral immunity. IPC express surface molecules CD4, CCR5, and CXCR4, which are known coreceptors required for human immunodeficiency virus (HIV) infection. Here we show that IPC are susceptible to and replicate HIV type 1 (HIV-1). Importantly, viral replication is triggered upon activation of IPC with CD40 ligand, a signal physiologically delivered by CD4 T cells. Immunohistochemical staining of tonsil from HIV-infected individuals reveals HIV p24+ IPC, consistent with in vivo infection of these cells. IPC exposed in vitro to HIV produce alpha interferon, which partially inhibits viral replication. Nevertheless, IPC efficiently transmit HIV-1 to CD4 T-cells, and such transmission is also augmented by CD40 ligand activation. IPC produce RANTES/CCL5 and MIP-1α/CCL3 when exposed to HIV in vitro. IPC also induce naïve CD4 T cells to proliferate and would therefore preferentially infect these cells. These results indicate that IPC may play an important role in the dissemination of HIV.


Sign in / Sign up

Export Citation Format

Share Document