scholarly journals Loss of HIV-1–specific CD8+ T Cell Proliferation after Acute HIV-1 Infection and Restoration by Vaccine-induced HIV-1–specific CD4+ T Cells

2004 ◽  
Vol 200 (6) ◽  
pp. 701-712 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Daniel E. Kaufmann ◽  
Xu G. Yu ◽  
Stanley K. Mui ◽  
Marylyn M. Addo ◽  
...  

Virus-specific CD8+ T cells are associated with declining viremia in acute human immunodeficiency virus (HIV)1 infection, but do not correlate with control of viremia in chronic infection, suggesting a progressive functional defect not measured by interferon γ assays presently used. Here, we demonstrate that HIV-1–specific CD8+ T cells proliferate rapidly upon encounter with cognate antigen in acute infection, but lose this capacity with ongoing viral replication. This functional defect can be induced in vitro by depletion of CD4+ T cells or addition of interleukin 2–neutralizing antibodies, and can be corrected in chronic infection in vitro by addition of autologous CD4+ T cells isolated during acute infection and in vivo by vaccine-mediated induction of HIV-1–specific CD4+ T helper cell responses. These data demonstrate a loss of HIV-1–specific CD8+ T cell function that not only correlates with progressive infection, but also can be restored in chronic infection by augmentation of HIV-1–specific T helper cell function. This identification of a reversible defect in cell-mediated immunity in chronic HIV-1 infection has important implications for immunotherapeutic interventions.

Blood ◽  
2002 ◽  
Vol 99 (11) ◽  
pp. 4053-4062 ◽  
Author(s):  
Andreas Heitger ◽  
Patricia Winklehner ◽  
Petra Obexer ◽  
Johannes Eder ◽  
Claudia Zelle-Rieser ◽  
...  

Impaired T-cell function after T-cell– depleting (TCD) therapy has been hypothesized to be related to a transient predominance of extrathymically expanding memory T cells. To test whether after TCD therapy the naive T-helper cell population is functionally intact, the in vitro immune response of CD4+CD45RA+ (naive) and of CD4+CD45RA− (memory) cells to polyclonal mitogens (immobilized anti-CD3, phytohemagglutinin) was analyzed by flow cytometry in 22 pediatric patients after high-dose chemotherapy (including 5 after autologous and 5 after allogeneic stem cell support). At 1 to 3 months after TCD therapy, patient samples showing decreased lymphoproliferative responses also showed a reduced induction of the early activation marker CD69 by CD4+ T cells from 4 to 72 hours after stimulation even when supplemented with exogenous interleukin-2. This defect affected CD4+CD45RA− cells, but, strikingly, also CD4+CD45RA+ cells, including samples in which CD4+CD45RA+ cells were more than 90/μL, thus indicating ongoing thymopoiesis. Histogram analyses showed the median peak channel of CD69 in control CD4+CD45RA+cells rising 98-fold (median) but only 28-fold in patient cells (P < .0001). Apoptosis as detected by annexin V staining was increased in resting patient CD4+ T cells (25% versus 6%) and also affected CD4+CD45RA+ cells (12% versus 5%, P < .01). When peripheral blood mononuclear cells (PBMCs) were enriched for T cells, stimulatory responses of CD4+ cells and of CD4+CD45RA+ cells markedly improved. Thus, after TCD therapy suppressor factors contained in the non–T-cell fraction of PBMCs may affect T-helper cells irrespective of their naive or memory phenotype thus extending T-cell dysfunction to the presumably thymus-dependently regenerated T cells.


2019 ◽  
Author(s):  
Melissa-Rose Abrahams ◽  
Sarah B. Joseph ◽  
Nigel Garrett ◽  
Lynn Tyers ◽  
Matthew Moeser ◽  
...  

AbstractAlthough antiretroviral therapy (ART) is highly effective at suppressing HIV-1 replication, the virus persists as a latent reservoir in resting CD4+ T cells during therapy. Little is known about the dynamics of reservoir formation and this reservoir forms even when ART is initiated early after infection. The reservoir of individuals who initiate therapy in chronic infection is generally larger and genetically more diverse than that of individuals who initiate in acute infection, suggesting the reservoir is formed continuously throughout untreated infection. To determine when viruses enter the latent reservoir, we compared sequences of replication-competent viruses from resting CD4+ T cells from nine women on therapy to viral sequences circulating in blood collected longitudinally prior to therapy. We found that 78% of viruses from the latent reservoir were most genetically similar to viruses replicating just prior to therapy initiation. This proportion is far greater than expected if the reservoir forms continuously and is always long-lived. Thus, therapy alters the host environment in a way that allows the formation of a majority of the long-lived latent HIV-1 reservoir.One Sentence SummaryMost of the long-lived, replication-competent HIV-1 reservoir is formed at the time of therapy initiation.


2021 ◽  
Vol 22 (2) ◽  
pp. 912
Author(s):  
Nabila Seddiki ◽  
John Zaunders ◽  
Chan Phetsouphanh ◽  
Vedran Brezar ◽  
Yin Xu ◽  
...  

HIV-1 infection rapidly leads to a loss of the proliferative response of memory CD4+ T lymphocytes, when cultured with recall antigens. We report here that CD73 expression defines a subset of resting memory CD4+ T cells in peripheral blood, which highly express the α-chain of the IL-7 receptor (CD127), but not CD38 or Ki-67, yet are highly proliferative in response to mitogen and recall antigens, and to IL-7, in vitro. These cells also preferentially express CCR5 and produce IL-2. We reasoned that CD73+ memory CD4+ T cells decrease very early in HIV-1 infection. Indeed, CD73+ memory CD4+ T cells comprised a median of 7.5% (interquartile range: 4.5–10.4%) of CD4+ T cells in peripheral blood from healthy adults, but were decreased in primary HIV-1 infection to a median of 3.7% (IQR: 2.6–6.4%; p = 0.002); and in chronic HIV-1 infection to 1.9% (IQR: 1.1–3%; p < 0.0001), and were not restored by antiretroviral therapy. Moreover, we found that a significant proportion of CD73+ memory CD4+ T cells were skewed to a gut-homing phenotype, expressing integrins α4 and β7, CXCR3, CCR6, CD161 and CD26. Accordingly, 20% of CD4+ T cells present in gut biopsies were CD73+. In HIV+ subjects, purified CD73+ resting memory CD4+ T cells in PBMC were infected with HIV-1 DNA, determined by real-time PCR, to the same level as for purified CD73-negative CD4+ T cells, both in untreated and treated subjects. Therefore, the proliferative CD73+ subset of memory CD4+ T cells is disproportionately reduced in HIV-1 infection, but, unexpectedly, their IL-7 dependent long-term resting phenotype suggests that residual infected cells in this subset may contribute significantly to the very long-lived HIV proviral DNA reservoir in treated subjects.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Michaela Gasch ◽  
Tina Goroll ◽  
Mario Bauer ◽  
Denise Hinz ◽  
Nicole Schütze ◽  
...  

The T helper cell subsets Th1, Th2, Th17, and Treg play an important role in immune cell homeostasis, in host defense, and in immunological disorders. Recently, much attention has been paid to Th17 cells which seem to play an important role in the early phase of the adoptive immune response and autoimmune disease. When generating Th17 cells underin vitroconditions the amount of IL-17A producing cells hardly exceeds 20% while the nature of the remaining T cells is poorly characterized. As engagement of the aryl hydrocarbon receptor (AHR) has also been postulated to modulate the differentiation of T helper cells into Th17 cells with regard to the IL-17A expression we ask how far do Th17 polarizing conditions in combination with ligand induced AHR activation have an effect on the production of other T helper cell cytokines. We found that a high proportion of T helper cells cultured under Th17 polarizing conditions are IL-8 and IL-9 single producing cells and that AHR activation results in an upregulation of IL-8 and a downregulation of IL-9 production. Thus, we have identified IL-8 and IL-9 producing T helper cells which are subject to regulation by the engagement of the AHR.


2003 ◽  
Vol 12 (5) ◽  
pp. 285-292 ◽  
Author(s):  
Scott B. Cameron ◽  
Ellen H. Stolte ◽  
Anthony W. Chow ◽  
Huub F. J. Savelkoul

Background:T helper cell polarisation is important under chronic immune stimulatory conditions and drives the type of the evolving immune response. Mice treated with superantigensin vivodisplay strong effects on Thsubset differentiation. The aim of the study was to detect the intrinsic capacity of T cells to polarise under variousex vivoconditions.Methods:Purified CD4+T cells obtained from superantigen-treated mice were cultured under Thpolarising conditionsin vitro. By combining intracellular cytokine staining and subsequent flow cytometric analysis with quantitative cytokine measurements in culture supernatants by enzyme-linked immunosorbent assay (ELISA), the differential Thpolarising capacity of the treatment can be detected in a qualitative and quantitative manner.Results and conclusions:BALB/c mice were shown to be biased to develop strong Th2 polarised immune responses using Th0 stimulation of purified CD4+T cells from phosphate-buffered saline-treated mice. Nevertheless, our analysis methodology convincingly showed that even in these mice, Toxic Shock Syndrome Toxin-1 treatmentin vivoresulted in a significantly stronger Th1 polarising effect than control treatment. Our results indicate that populations of Thcells can be assessed individually for their differential Th1 or Th2 maturation capacityin vivoby analysing robustin vitropolarisation cultures combined with intracellular cytokine staining and ELISA.


1997 ◽  
Vol 185 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Mercedes Rincón ◽  
Juan Anguita ◽  
Tetsuo Nakamura ◽  
Erol Fikrig ◽  
Richard A. Flavell

Interleukin (IL)-4 is the most potent factor that causes naive CD4+ T cells to differentiate to the T helper cell (Th) 2 phenotype, while IL-12 and interferon γ trigger the differentiation of Th1 cells. However, the source of the initial polarizing IL-4 remains unclear. Here, we show that IL-6, probably secreted by antigen-presenting cells, is able to polarize naive CD4+ T cells to effector Th2 cells by inducing the initial production of IL-4 in CD4+ T cells. These results show that the nature of the cytokine (IL-12 or IL-6), which is produced by antigen-presenting cells in response to a particular pathogen, is a key factor in determining the nature of the immune response.


2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


1994 ◽  
Vol 180 (4) ◽  
pp. 1273-1282 ◽  
Author(s):  
M B Graham ◽  
V L Braciale ◽  
T J Braciale

T lymphocytes play a primary role in recovery from viral infections and in antiviral immunity. Although viral-specific CD8+ and CD4+ T cells have been shown to be able to lyse virally infected targets in vitro and promote recovery from lethal infection in vivo, the role of CD4+ T lymphocytes and their mechanism(s) of action in viral immunity are not well understood. The ability to further dissect the role that CD4+ T cells play in the immune response to a number of pathogens has been greatly enhanced by evidence for more extensive heterogeneity among the CD4+ T lymphocytes. To further examine the role of CD4+ T cells in the immune response to influenza infection, we have generated influenza virus-specific CD4+ T cell clones from influenza-primed BALB/c mice with differential cytokine secretion profiles that are defined as T helper type 1 (Th1) clones by the production of interleukin 2 (IL-2) and interferon gamma (IFN-gamma), or as Th2 clones by the production of IL-4, IL-5, and IL-10. Our studies have revealed that Th1 clones are cytolytic in vitro and protective against lethal challenge with virus in vivo, whereas Th2 clones are noncytolytic and not protective. Upon further evaluation of these clonal populations we have shown that not only are the Th2 clones nonprotective, but that pulmonary pathology is exacerbated as compared with control mice as evidenced by delayed viral clearance and massive pulmonary eosinophilia. These data suggest that virus-specific CD4+ T cells of the Th2 subset may not play a primary role in virus clearance and recovery and may lead to immune mediated potentiation of injury.


Author(s):  
Carlos A. Guzmán ◽  
Daniele Saverino ◽  
Eva Medina ◽  
Daniela Fenoglio ◽  
Birgit Gerstel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document