Hydraulic Servo System as Applied to a Photographic Pattern Generator

Author(s):  
J. J. ’t Mannetje
2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


2000 ◽  
Author(s):  
Xuanyin Wang

Abstract This paper researches on the hydraulic servo system by using ordinary on-off valves. The mathematic model of an asymmetric hydraulic cylinder servo control system is built, and its characteristic is analysed here. To reduce the static and dynamic characteristic differences between forward and reverse motion of asymmetric cylinder, and improve system’s performance, a self-tuning linear quadratic gaussian optimum controller (SLQG) is designed successful. In the end, an asymmetric hydraulic cylinder servo system of paint robot is researched. The result shows that the above method is effective.


2017 ◽  
Vol 24 (18) ◽  
pp. 4145-4159 ◽  
Author(s):  
Hai-Bo Yuan ◽  
Hong-Cheol Na ◽  
Young-Bae Kim

This paper examined system identification using grey-box model estimation and position-tracking control for an electro-hydraulic servo system (EHSS) using hybrid controller composed of proportional-integral control (PIC) and model predictive control (MPC). The nonlinear EHSS model is represented by differential equations. We identify model parameters and verify their accuracy against experimental data in MATLAB to evaluate the validity of this mathematical model. To guarantee improved performance of EHSS and precision of cylinder position, we propose a hybrid controller composed of PIC and MPC. The controller is designed using the Control Design and Simulation module in the Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW). A LabVIEW-based experimental rig is developed to apply the proposed controller in real time. Then, the validity and performance superiority of the hybrid controller were confirmed by comparing them with the MPC and PIC results. Results of real-life experiments show improved robustness and dynamic and static properties of EHSS.


Sign in / Sign up

Export Citation Format

Share Document