Social Capital as a Long-Term Resource Among Ethnic Networks: The South Asian Business Community in Britain

Author(s):  
Shaheena Janjuha-Jivraj
2020 ◽  
Vol 79 (3) ◽  
pp. 633-658
Author(s):  
Prakash Kumar

India's agrarian history has for the most part been cast within colonial and nationalist frameworks or in analyses of modernity and development in the South Asian historiography on both sides of the independence divide. This leaves plenty of space to discuss both the vast engagement of American actors with Indian elite formations and modifications to the agrarian projects contingent upon those interactions. A focus on the Americanist drive for agrarian modernization in India allows for exploring the distinct cultural location of modernization in a long-term perspective and its engagement with colonial “development.” A study of their mutual interaction gives insights into modernization's somewhat distinct itinerary on the subcontinent and provides specificity to the history of the otherwise spatially wider American intervention in global and inter-Asian contexts.


2018 ◽  
Vol 10 (5) ◽  
pp. 1127-1149 ◽  
Author(s):  
P. Swapna ◽  
R. Krishnan ◽  
N. Sandeep ◽  
A. G. Prajeesh ◽  
D. C. Ayantika ◽  
...  

2017 ◽  
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Xiong Liu ◽  
Meng Gao ◽  
Yuanhong Zhao ◽  
...  

Abstract. Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to local human and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of processes controlling seasonal to long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian Monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006–2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990–2010. OMI observed lower tropospheric ozone over India averaged for 2006–2010 show the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone produced in the lower troposphere of India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong interannual positive correlations (r = 0.55–0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990–2010 estimate a mean annual trend of 0.19 ± 0.07 (p-value 


2018 ◽  
Vol 18 (5) ◽  
pp. 3101-3118 ◽  
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Xiong Liu ◽  
Meng Gao ◽  
Yuanhong Zhao ◽  
...  

Abstract. Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006–2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990–2010. OMI observed lower tropospheric ozone over India averaged for 2006–2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r=0.55–0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990–2010 estimate a mean annual trend of 0.19 ± 0.07 (p value < 0.01) ppbv yr−1 in Indian lower tropospheric ozone over this period, which are mainly driven by increases in anthropogenic emissions with a small contribution (about 7 %) from global methane concentration increases.


2018 ◽  
Vol 08 (11) ◽  
pp. 2416-2443
Author(s):  
Sanjay Sehgal ◽  
Piyush Pandey ◽  
Sakshi Saini

2000 ◽  
Vol 179 ◽  
pp. 201-204
Author(s):  
Vojtech Rušin ◽  
Milan Minarovjech ◽  
Milan Rybanský

AbstractLong-term cyclic variations in the distribution of prominences and intensities of green (530.3 nm) and red (637.4 nm) coronal emission lines over solar cycles 18–23 are presented. Polar prominence branches will reach the poles at different epochs in cycle 23: the north branch at the beginning in 2002 and the south branch a year later (2003), respectively. The local maxima of intensities in the green line show both poleward- and equatorward-migrating branches. The poleward branches will reach the poles around cycle maxima like prominences, while the equatorward branches show a duration of 18 years and will end in cycle minima (2007). The red corona shows mostly equatorward branches. The possibility that these branches begin to develop at high latitudes in the preceding cycles cannot be excluded.


Sign in / Sign up

Export Citation Format

Share Document