Landscape Ecological Approach For Restoration Site Of Natural Forests In The Ota River Basin, Japan

Author(s):  
Nobukazu Nakagoshi ◽  
Sonoko Watanabe ◽  
Tomoko Koga
2020 ◽  
Vol 12 (3) ◽  
pp. 941
Author(s):  
Di Liu ◽  
Hai Chen ◽  
Hang Zhang ◽  
Tianwei Geng ◽  
Qinqin Shi

Land surface elements, such as land use, are in constant change and dynamically balanced, driving changes in global ecological processes and forming the regional differentiation of surface landscapes, which causes many ecological risks under multiple sources of stress. The landscape pattern index can quickly identify the disturbance caused by the vulnerability of the ecosystem itself, thus providing an effective method to support the spatial heterogeneity of landscape ecological risk. A landscape ecological risk model based on the degree of interference and fragility was constructed and spatiotemporal differentiation of risk between 1980 and 2017 in Shaanxi Province was analyzed. The spatiotemporal migration of risk was demonstrated from the perspective of geomorphological regionalization and risk gravity. Several conclusions were drawn: The risk of Shaanxi Province first increased and then decreased, at the same time, the spatial differentiation of landscape ecological risk was very significant. The ecological risk presented a significant positive correlation but the degree of autocorrelation decreased. The risk of the Qinba Mountains was low and the risk of the Guanzhong Plain and Han River basin was high. The risk of Loess Plateau and sandstorm transition zone decreased greatly and their risk gravities shifted to the southwest. The gravity of the Guanzhong Plain and Qinling Mountains had a northward trend, while the gravity of the Han River basin and Daba Mountains shifted to the southeast. In the analysis of typical regions, there were different relationships between morphological indicators and risk indexes under different geomorphological features. The appropriate engineering measures and landscape management for different geomorphological regionalization were suggested for effective reduction of ecological risks.


2021 ◽  
Vol 932 (1) ◽  
pp. 012011
Author(s):  
Y Wang

Abstract The Shiyang River basin is a typical inland arid region and one of the most fragile and sensitive areas of terrestrial ecosystems in China, and it is important to understand its ecological changes in a timely and accurate manner. This article selects the Shiyang River basin forest as the research area and uses Google Earth Engine (GEE) to evaluate and monitor the ecological environment quality of the Shiyang River basin from 1990 to 2020. The geographical detector model (GDM) was also used to analyse the sensitivity of the forest ecological environment to three natural factors: elevation, temperature and altitude. The results showed that the ecological quality of the natural forest is significantly better than that of the man-made forest area, and the ecological quality grade is higher. The forest change area RSEI has a large annual variation in ecological quality and is vulnerable to external factors. Among the influencing natural factors, the sensitive factors of precipitation and altitude are both greater than 84%. The temperature sensitivity of natural forests is stronger than that of man-made forests, ranging from 66% to 92% overall.


2019 ◽  
Vol 40 (2) ◽  
pp. 137-143
Author(s):  
M. Yu. Semenov ◽  
Yu. M. Semenov ◽  
V. A. Snytko ◽  
A. V. Silaev

Ibis ◽  
2008 ◽  
Vol 137 ◽  
pp. S139-S146 ◽  
Author(s):  
PAUL OPDAM ◽  
RUUD FOPPEN ◽  
RIEN REIJNEN ◽  
ALEX SCHOTMAN

2022 ◽  
Vol 14 (2) ◽  
pp. 814
Author(s):  
Josef Seják ◽  
Ivo Machar ◽  
Jan Pokorný ◽  
Karl Seeley ◽  
Jitka Elznicová

This article shows how to restore Central European natural capital effectively. Water in the landscape is primarily sustained by vegetation and soil, most effectively by natural forests and only secondarily by artificial reservoirs. The authors document these facts using a case study from the Želivka River basin (Švihov reservoir), which collects surface water for the metropolitan region of Prague and Central Bohemia. With the Energy-Water-Vegetation Method, the authors demonstrate that the cultural human-changed landscape of the Želivka river basin is able to utilize only about 60% of its solar energy potential. In 1.5% of the territory of the Czech Republic, society annually loses supporting ecosystem services at a level higher than 25% of the annual GDP of the CR 2015. Water retention in the landscape needs to be re-evaluated and addressed in accordance with the thermodynamic principles of life and ecosystem functioning in the biosphere. It is necessary to begin restoring the most efficient natural capital in the landscapes and to return the broad-leaved deciduous forests by intelligent forestation methods to the cultural landscape to the extent justified; this is especially true of the Želivka River basin, which is Czechia’s biggest surface drinking-water collecting area.


Sign in / Sign up

Export Citation Format

Share Document