scholarly journals Spatiotemporal Evolution of Landscape Ecological Risk Based on Geomorphological Regionalization during 1980–2017: A Case Study of Shaanxi Province, China

2020 ◽  
Vol 12 (3) ◽  
pp. 941
Author(s):  
Di Liu ◽  
Hai Chen ◽  
Hang Zhang ◽  
Tianwei Geng ◽  
Qinqin Shi

Land surface elements, such as land use, are in constant change and dynamically balanced, driving changes in global ecological processes and forming the regional differentiation of surface landscapes, which causes many ecological risks under multiple sources of stress. The landscape pattern index can quickly identify the disturbance caused by the vulnerability of the ecosystem itself, thus providing an effective method to support the spatial heterogeneity of landscape ecological risk. A landscape ecological risk model based on the degree of interference and fragility was constructed and spatiotemporal differentiation of risk between 1980 and 2017 in Shaanxi Province was analyzed. The spatiotemporal migration of risk was demonstrated from the perspective of geomorphological regionalization and risk gravity. Several conclusions were drawn: The risk of Shaanxi Province first increased and then decreased, at the same time, the spatial differentiation of landscape ecological risk was very significant. The ecological risk presented a significant positive correlation but the degree of autocorrelation decreased. The risk of the Qinba Mountains was low and the risk of the Guanzhong Plain and Han River basin was high. The risk of Loess Plateau and sandstorm transition zone decreased greatly and their risk gravities shifted to the southwest. The gravity of the Guanzhong Plain and Qinling Mountains had a northward trend, while the gravity of the Han River basin and Daba Mountains shifted to the southeast. In the analysis of typical regions, there were different relationships between morphological indicators and risk indexes under different geomorphological features. The appropriate engineering measures and landscape management for different geomorphological regionalization were suggested for effective reduction of ecological risks.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Yuan Li ◽  
Guihua Lu ◽  
Hai He ◽  
Zhiyong Wu

Both convection and land surface parameterization influence seasonal precipitation forecasts. In this study, the sensitivity of dynamical downscaling seasonal precipitation forecasts to convection and land surface parameterization was investigated by nesting the Weather Research and Forecasting (WRF) model into the NCEP’s Climate Forecast System version 2 (CFSv2) retrospective forecasts with four convective schemes: Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ), Grell–Freitas (GF), and new simplified Arakawa–Schubert (NSAS) schemes, and two land surface schemes: Noah and simplified Simple Biosphere (SSiB) schemes over the Han River basin. The CFSv2 model biases are reduced when the KF convective scheme is used in the wet summer season. However, negative biases still exist especially when the combination of BMJ and SSiB schemes is used. Compared with CFSv2 reforecasts and other combinations of schemes, the forecast skills of spatial patterns of precipitation anomalies are highest when the combination of KF and Noah schemes is used in summer. In contrast, the combination of BMJ and SSiB schemes shows lowest forecast skills in summer. To understand the causes of the differences in precipitation forecasts using different parameterization schemes, the simulated moisture flux convergence, thermodynamic parameters at different pressure levels, convective available potential energy (CAPE), convective inhibition (CIN), and heat fluxes are compared with the data in the ERA-5 reanalysis dataset. The WRF model-simulated moisture flux convergence is closer to that of the ERA-5 reanalysis compared with that of the CFSv2 reforecasts in summer. The vertical thermodynamic profiles also suggest that the combination of the KF and Noah schemes has caused a more unstable atmosphere, which is crucial for precipitation. In contrast, the combination of BMJ and SSiB schemes shows a less unstable atmospheric environment in summer, which explains the lower forecast skills compared with other schemes. The spatial patterns of CAPE are also improved when using the WRF model, which further enhances the precipitation forecast skills over the Han River basin.


2018 ◽  
Vol 25 (1) ◽  
pp. 1-13
Author(s):  
Wenmin Qin ◽  
Lunche Wang ◽  
Aiwen Lin ◽  
Chao Yang ◽  
Hongji Zhu

2013 ◽  
Vol 52 (4) ◽  
pp. 802-818 ◽  
Author(s):  
Seong-Sim Yoon ◽  
Deg-Hyo Bae

AbstractMore than 70% of South Korea has mountainous terrain, which leads to significant spatiotemporal variability of rainfall. The country is exposed to the risk of flash floods owing to orographic rainfall. Rainfall observations are important in mountainous regions because flood control measures depend strongly on rainfall data. In particular, radar rainfall data are useful in these regions because of the limitations of rain gauges. However, radar rainfall data include errors despite the development of improved estimation techniques for their calculation. Further, the radar does not provide accurate data during heavy rainfall in mountainous areas. This study presents a radar rainfall adjustment method that considers the elevation in mountainous regions. Gauge rainfall and radar rainfall field data are modified by using standardized ordinary cokriging considering the elevation, and the conditional merging technique is used for combining the two types of data. For evaluating the proposed technique, the Han River basin was selected; a high correlation between rainfall and elevation can be seen in this basin. Further, the proposed technique was compared with the mean field bias and original conditional merging techniques. Comparison with kriged rainfall showed that the proposed method has a lesser tendency to oversmooth the rainfall distribution when compared with the other methods, and the optimal mean areal rainfall is very similar to the value obtained using gauges. It reveals that the proposed method can be applied to an area with significantly varying elevation, such as the Han River basin, to obtain radar rainfall data of high accuracy.


Sign in / Sign up

Export Citation Format

Share Document